举一反三
- 设[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]是一个正整数。用数学归纳法证明:如果[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]、[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]都是整数,且[tex=5.643x1.357]BhPtz35zWC0zKgd7updWaQ==[/tex],则当[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]是任意一个非负整数时,就有[tex=7.143x1.5]QnokmlKduLq/SILTVG9W35xSj59PRDa3yme9i4mkSYg=[/tex]。
- 证明[tex=2.5x1.143]TBygZ2yTwML3Lo+RYhKWgg==[/tex]是合数,如果[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]是大于1的整数且[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]是奇数。
- 证明:如果[tex=2.643x1.357]wX5rxliQzaaiHxrmreSqsg==[/tex]和[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]为大于1的整数,并且如果[tex=6.5x1.357]sBfXW0o0XYzGYUVg21XLTkdW+CfQnC3ZhLcXy5i+TPs=[/tex],其中[tex=1.429x1.214]UDzjWQOzN0EZEJXR2XShvQ==[/tex]为整数,则[tex=6.286x1.357]EfBqI4VqjKHoNuCZ6SDPKEmDBNoPiOGsKf3EiBtUzo4=[/tex]。
- 试找出与整数[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]模[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]同余的绝对值最小的整数的计算公式,这里[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]为一正整数。
- 令[tex=3.357x1.357]UPaNvJfcVjX9mh3S818g8w==[/tex]为语句“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,其中变量[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的论域均为正整数集合。(所谓“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,是指存在某个整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=2.786x1.0]JyKu5Q0JmohTgp+FMz2hRQ==[/tex])确定下列每条语句的真值。[tex=2.714x1.357]gkwGei5ITDOF0egHPEe5fQ==[/tex]
内容
- 0
令[tex=3.357x1.357]UPaNvJfcVjX9mh3S818g8w==[/tex]为语句“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,其中变量[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的论域均为正整数集合。(所谓“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,是指存在某个整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=2.786x1.0]JyKu5Q0JmohTgp+FMz2hRQ==[/tex])确定下列每条语句的真值。[tex=2.929x1.357]9Vv4gtpaKbF7Mnn315YE6Q==[/tex]
- 1
证明 :若[tex=5.857x1.0]O9qGQWb1YzoOCaRetv+AwX110rFyCVOq/fe1bQ41+mw=[/tex]是整数环[tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex]中的[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]个整数,且其最大公因数是[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex], 则[p=align:center][tex=8.429x1.357]XV2nUy3dLMVuVIXZcl3mJWzQZdgP6uNWQ6nArisf0GIz/RqNdlyoq7p28UL+wpiTqfyBK9RQL4h7+1cSC2F40OD1Wbj9LO49EGqjNOkEO0g=[/tex].
- 2
哥伦布的自生成序列是具有下述性质的、唯一的、非减的正整数序列[tex=4.929x1.0]yJfOg1TDGYwKya6qsPL34dlLur+da3qAdSkCdiYu5Qk=[/tex],对每个正整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]来说,这个序列恰好包含[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]的[tex=0.929x1.0]advcJlz0zT8rlkGE05P38Q==[/tex]次出现。证明:若[tex=1.929x1.357]oGTnP9XV272ssGnEwj5APA==[/tex]是使得[tex=2.571x1.0]gkO1XiHTTetmOWz1fZ28gw==[/tex]的最大整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],其中[tex=1.143x1.0]tGArVenZUgQAJGIRDibSaw==[/tex]是哥伦布的自生成序列的第[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]项,则[tex=5.357x3.286]CT+7qt9wTaLxGXclz85Gobv68PlT7QTynPkGEeouUr4=[/tex]且[tex=7.143x3.286]QkJDHUVZq9OLnFTnevwdmeD3drPZ41F0jCKUTs3faCc=[/tex]。
- 3
证明如果[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是基数为[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]的集合,[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]为正整数,则在集合[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]与集合[tex=5.786x1.357]8qNI+4A+Dkxx07cBdC1LPv8EKLAzxKDiJ02BVQsOihI=[/tex]之间存在一个一一对应函数。
- 4
使用生成函数证明范德蒙恒等式:[tex=14.857x3.286]hDB3eLQPiWWd9ft+Q14eoJVcUCay0ClzWlPckFv+3/imTEddfU462KDq1s/vFmay[/tex],其中[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]、[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]和[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]是非负整数,且[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]不超过[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]或[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]。