举一反三
- 进行重复独立试验,设每次试验成功的概率为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex],失败的概率为[tex=8.0x1.357]HNVuFtAyiZQeZ0TpexXGgQ==[/tex](2)将试验进行到出现 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]次成功为止, 以 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 表示所需的试验次数,求[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的分布律. (此时称 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]服从以[tex=1.286x1.0]LLLgqNA2zU6RDMk1l5ZYaA==[/tex]为参数的巴斯卡分布或负二项分布.)
- 进行重复独立试验,设每次试验成功的概率为 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex],失败的概率为[tex=8.714x1.286]nhUGlDZBXVlWuItllFfhGAlm5jhXCEnni1Jzq3lYvZg=[/tex]。将试验进行到出现一次成功为止,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示所需的试验次数,求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布律。(此时称 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服 从以 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 为参数的几何分布)
- 进行重复独立试验,设每次试验成功的概率为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex],失败的概率为[tex=8.0x1.357]HNVuFtAyiZQeZ0TpexXGgQ==[/tex](1)将试验进行到出现一次成功为止,以[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]表示所需的试验次数,求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布律(此时称[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从以[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为参数的几何分布)
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 重复进行伯努利试验,设每次试验成功的概率为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex],以[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]表示取得第[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]次成功时的试验次数,求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布律.
内容
- 0
重复进行伯努利试验,设每次试验成功的概率为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex],将试验进行到成功和失败都出现为止.以[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]表示试验次数,求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布律.
- 1
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 2
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在区间 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上服从均匀分布,在 [tex=7.214x1.357]V+xkADBZ+6KY2QE3eRSKFA==[/tex] 的条件下,随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在区间 [tex=2.357x1.357]MXPQWNi+zHHCEzuZBSyPtw==[/tex] 上服从均匀分布, 求:(1)随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数;(2)[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘密度函数;(3)概率 [tex=5.5x1.357]pcLS3GdwGHaNP3Uhki575Q==[/tex]
- 3
已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的联合概率分布为[img=840x92]178f2e157cdbead.png[/img]试求:(1)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布;(2) [tex=2.214x1.143]tkk4aXcDoKeg9ZsIAK+yrQ==[/tex]的概率分布;(3) [tex=6.857x2.429]RqGV9tRUT6gh1TsLo9YXgRs6mochCT0I/f5RwmC1X0k=[/tex]的数学期望.
- 4
假设随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 服从参数为 1 的指数分布,随机变量[p=align:center][tex=12.286x2.929]n7MYqQ4KxjX4tqxTB2ivvjHqf4EL5FubDGgRNzuCy58Sjq5Y3JSS2nvBXyZWYv4BBYIdfZ92MSBn11pXpX/hmirefjAh70242/K8bs7rSvn6soDeGUhu6zB2q9rnJWYX[/tex]求 [tex=3.643x1.357]QvdrmMEkEkXBcM7p9FuvTUZQkVyMBn3HfmpGxCP9g18=[/tex] 的联合分布律与边缘分布律.