口袋中有 7 个白球、3 个黑球.(1) 每次从中任取一个不放回,求首次取出白球的取球次数[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布列:(2)如果取出的是黑球则不放回,而另外放入一个白球,此时 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布列如何.
举一反三
- 口袋中有7个白球,3个黑球 .(1)每次从中任取一个不放回,求首次取出白球次数[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的概率分布列;(2)如果取出的是黑球则不放回,而另外放入一个白球,此时[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的概率分布列如何 .
- 盒中有 5 个球,其中有 3 个白球,2 个黑球,从中任取 2 个球,求:白球数 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望和方差.
- 袋中有 3 个白球, 7 个黑球,从中无放回地抽取,每次抽取一个,直到取得黑球为止. 以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示取出的白球个数,求 [tex=1.571x1.0]pGYiD18r66gsUrCx6KlaQA==[/tex] 及 [tex=2.0x1.0]2ZlD0eMQFO54VTMZg06aQg==[/tex]
- 袋中有 5 个红球,3个白球. 无放回地每次取一球,直到取得红球为此. 用 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]表示抽取次数,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布律.
- 盒中有 3 个黑球、2 个白球、2个红球,从中任取 4 个球,以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 分别表示取到黑球与白球的个数,求 [tex=3.857x1.357]YbF2ohlyA5KynPPilUI/TA==[/tex] .