设X服从参数为1的泊松分布,Y服从参数为2的泊松分布,而且X与Y相互独立,则P(max(X,Y)≠0)=
A: 1-exp(-3)
B: 1-exp(-1)
C: 1-exp(-2)
D: 1-2exp(-2)
A: 1-exp(-3)
B: 1-exp(-1)
C: 1-exp(-2)
D: 1-2exp(-2)
举一反三
- 设随机变量X与Y相互独立,X服从二项分布,n=2,p=0.5,Y服从参数为1的泊松分布,则P(X-Y=2)等于
- 设随机变量X与Y相互独立, X的分布律为P(X=1)=P(X=-1)=1/2, Y服从参数为λ的泊松分布,令Z=XY,则cov(X,Z)=( )
- 设X与Y相互独立,分别服从参数为1和2的泊松分布,则P(X+Y=1)的值为
- 设随机变量X服从标准正态分布N(0,1), 则E(exp(X))= A: 1 B: exp(1/2) C: exp(-1/2) D: 0
- 求由方程[img=134x41]17da65377a0f91e.png[/img]所确定的隐函数[img=91x50]17da653782b7d9a.png[/img]的导数。 ( ) A: x*exp(y/x) B: x*exp(y/x)*(1/x + y/(x^2*exp(y/x))) C: x*exp(y/x)*(1/x + y/(x^2*exp(y/x)))+x*exp(y/x) D: (1/x + y/(x^2*exp(y/x)))