举一反三
- [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]理论和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]理论对激励实践的意义是什么?
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 某厂销售收入[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与利润[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的统计资料如表所示。[img=631x178]1790c8ce45dac14.png[/img]若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]有线性关系,试求出[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的线性回归方程。
- 若随机向量[tex=2.786x1.286]d8ZGztHRaPoTHI8v2JwIGQ==[/tex]服从二维正态分布,则①[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;②若[tex=3.5x1.286]sKaD0gq7ZfmqhDuxwY0565jK5tQQMeY1a44eA15r+0I=[/tex],则[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;③[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从一维正态分布;④若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立, 则[tex=6.143x1.286]1FUpcitV2qNzFaSobaOhNfKUbfF8QOwkW6yD2rc0W2g=[/tex],几种说法中正确的是 A: ①②③④ B: ②③④ C: ①③ D: ①②④
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
内容
- 0
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的方差存在,证明:[tex=10.143x1.286]HG2ihwjcXTdzCTS/bC0QJsaC65j3BHkkW1/8B8OIxFg=[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关的充分和必要条件.
- 1
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的数学期望[tex=1.714x1.286]tnqXjXNHESmtAydX2nd1FQ==[/tex]和[tex=1.571x1.286]9HHQOQ6kFW8m23SI56qi0g==[/tex]存在,证明:假如[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立,则[tex=7.0x1.286]Fsc4c/MsrMbL1SEpyKHrDmKSWwNmUF4ydiRy0R1FUw0=[/tex].
- 2
袋中有5个号码1,2,3,4,5,从中任取3个,记这3个号码中最小的的号码为[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],最大的号码为[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] .(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合分布律;(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立 .
- 3
若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立,证明[tex=19.143x1.286]NpVA38FZm94Nc/MNwvL8w8SoZ+pJnmEA8X0PISXKPg7Y8hNmBllpKcNorgYuDSrh[/tex]。
- 4
设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 与 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 相互独立, [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 服从正态分布 [tex=3.929x1.286]N5dq4BwkTdWMAb0OmXWoEaQHcjMspfC0l4+u6bRl6uAvEVUQUcSxPV1hL5aXeKrf[/tex], [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从均匀分布 [tex=3.857x1.286]oINv2OUrkfWf54e8Ht2lD1iv2R1pi2JiMcP1OIfioeI=[/tex] , 求 [tex=4.929x1.286]bstb6Acm/GnARrPc8f1uPw==[/tex] 的密度函数.