设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
举一反三
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 与 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 相互独立, [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 服从正态分布 [tex=3.929x1.286]N5dq4BwkTdWMAb0OmXWoEaQHcjMspfC0l4+u6bRl6uAvEVUQUcSxPV1hL5aXeKrf[/tex], [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从均匀分布 [tex=3.857x1.286]oINv2OUrkfWf54e8Ht2lD1iv2R1pi2JiMcP1OIfioeI=[/tex] , 求 [tex=4.929x1.286]bstb6Acm/GnARrPc8f1uPw==[/tex] 的密度函数.
- 若随机向量[tex=2.786x1.286]d8ZGztHRaPoTHI8v2JwIGQ==[/tex]服从二维正态分布,则①[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;②若[tex=3.5x1.286]sKaD0gq7ZfmqhDuxwY0565jK5tQQMeY1a44eA15r+0I=[/tex],则[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;③[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从一维正态分布;④若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立, 则[tex=6.143x1.286]1FUpcitV2qNzFaSobaOhNfKUbfF8QOwkW6yD2rc0W2g=[/tex],几种说法中正确的是 A: ①②③④ B: ②③④ C: ①③ D: ①②④
- 设二维随机变量[tex=2.786x1.286]vzGOG+JNlRurOKCm31T4Kw==[/tex]在圆域[tex=5.357x1.286]oOYTzm/NiJqJo4OjC55er1L5z17HiYuK5dHQrlDB2IM=[/tex]上服从均匀分布,(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数[tex=0.571x1.286]mGHbklYlBVNXKEGAelwITA==[/tex];(2)问[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立?
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从区间[tex=1.929x1.286]iMAZ+4hDYSeldsmK7BlytA==[/tex]上的均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服从[tex=2.357x1.286]AXVYg5COGe7fG0Iatqkkig==[/tex]的指数分布,且[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,则[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]的联合密度函数[input=type:blank,size:4][/input]。