举一反三
- 已知函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 有一个原函数为 -2, 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 及其不定积分 [tex=4.429x2.643]t9imgiLdM4NYgL3GMJ+k2Ih8q01SIhbJRjSzGMP6f20=[/tex]
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为可微函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的反函数, 求[tex=7.143x2.857]0GtUrd74HajWRYIqA6+gzGtv+fENhCxFNp8nMm5GsoAsfHqe5T9NQzHNDG2ynKRPbxjdlc7aIhMkTvCOp3fLQA==[/tex]。
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是连续的奇函数,证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的原函数是偶函数。若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是连续的偶函数,问[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的原函数是否都是奇函数?
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=7.357x1.357]v0EsoswsuaK89q34elWXwnX8Xx3QbYAbLMGq2vpPauw=[/tex],求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]。
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 连续, [tex=7.286x2.643]ohMuAAUO8tbfC4KGY2AtFrExZMK4JIwCs97TjEC2HbI=[/tex] , 试证:若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是奇函数,则 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 是偶函数
内容
- 0
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=9.357x1.357]jS3BXh2rdfvLZd4hIu+jvKEGxx9TN7URFb39YkdVMaQ=[/tex]为常数。证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数。
- 1
试证明下列命题:设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上可微. 若 [tex=8.357x1.429]F27M+tMBWun73FG3D7wgFf6yxrSuQhl/hcXjXKuAY6T8Z5IR9t8e2kKqcx3rNmc0[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上是一个常数 (函数).
- 2
试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上的非负函数. 若 [tex=4.429x1.357]PMcHyNyC4QvVrD6r7UpeWPC5dgHNqfZbIcyMBLj97JM=[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex] 上没有原函数 (例如 [tex=8.5x1.571]/fZjg0TzX3OwsxRJu29sR7muo21pUOGZI+P0IkTCLOUChmf8b/t1WO+lVSDeuebU[/tex] 在[-1,1]上没有原函数).
- 3
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]连续,[tex=7.214x2.643]2ZJQOGzPP+WXkSjEhj0ot/8XbWpx0nNxKCDDSnV56LI=[/tex],试证:(1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是偶函数;(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是偶函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是奇函数.
- 4
设[tex=9.0x2.857]dT5tO8+kvspSX29znp6hWPcRleyC/Oor3hOtFnEeVKWMhAwyQN1L849Sg2m7O8+O[/tex].(1)证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是以[tex=0.571x0.786]l57IXZOdm4C+U7oqJ3rVIQ==[/tex]为周期的周期函数;(2)求函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的值域.