设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的一个原函数是[tex=2.0x1.214]Nqibwbn0fmbuYlKB2CPkmA==[/tex],试求:[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex].
举一反三
- 已知函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 有一个原函数为 -2, 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 及其不定积分 [tex=4.429x2.643]t9imgiLdM4NYgL3GMJ+k2Ih8q01SIhbJRjSzGMP6f20=[/tex]
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为可微函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的反函数, 求[tex=7.143x2.857]0GtUrd74HajWRYIqA6+gzGtv+fENhCxFNp8nMm5GsoAsfHqe5T9NQzHNDG2ynKRPbxjdlc7aIhMkTvCOp3fLQA==[/tex]。
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是连续的奇函数,证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的原函数是偶函数。若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是连续的偶函数,问[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的原函数是否都是奇函数?
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=7.357x1.357]v0EsoswsuaK89q34elWXwnX8Xx3QbYAbLMGq2vpPauw=[/tex],求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]。
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 连续, [tex=7.286x2.643]ohMuAAUO8tbfC4KGY2AtFrExZMK4JIwCs97TjEC2HbI=[/tex] , 试证:若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是奇函数,则 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 是偶函数