• 2022-05-26
     证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是,它的秩等于 2 和符号差等于 0, 或者秩等于 1 .
  • 证明 必要性. 如果实二次型 [tex=7.214x1.357]CKlOGn/4oc+CIjd/NrEXYPMrKY7YR6bQnYIT6RHXQTu8qoEKb6VulKEPDo2aARf1[/tex]可分解成两个一次齐次多项式的乘积:[tex=24.571x3.071]qeiYnKXLEhyhuGRg8yLtr71u41xGdclPYGE78LGTDAgysbLgJHKAzCcQ/8Ox2HvDjzZnQEAk0nyZqlDFI+gmXHxfRSVg7uiNnvuwgefBOPvufOV1/yjpEfqpD2B0/vU8o79KEwMAq7fJ4ynXr9efuBH7HIR3QIZ2OKgEp8sA13qStgEXDq3t+uCuErMI1SFq5UhTiQbTJRA/IJox7SCRqaDBP3Qp/oFomVwxewUb+etlb1VdYMda3D1KeG93S1MRROgOfsj3hPG6D53yQosN7kmsGGFr+onpuUMj7r+GZ8k=[/tex]有两种可能 :1) [tex=17.357x1.357]Ew8ljGDDVpo6o4AlVy204DlIuHOvc/cWZATXis1LvWq3qs02SAJbQDdaxKH9hFCnAgVaGOQoQK+Pa4dBg3Sw5s7Z/E2265PYMcYpHLWCzNlm0CO7/ywhaaK6cSNu6bs8rmDOxBYGizLUhdw9R/P06Q==[/tex]于是[tex=20.5x1.571]CKlOGn/4oc+CIjd/NrEXYPMrKY7YR6bQnYIT6RHXQTuEmGFLdnW0+mOKsgeHP0f9sfBhJrdVAaod37R7N7Cf+LmDbyM/5vHCr7GUef08tw/BvN5lUQCn1mgXWrWCyelFlxkjuFxd7csZJG6IMNGsbA==[/tex]因为 [tex=5.643x1.0]DkQMvCDF/4vyPYjHN/R9lbB/2LLigJYNE+lKntlZvD0=[/tex]不全为 0, 以[tex=5.643x1.0]DkQMvCDF/4vyPYjHN/R9lbB/2LLigJYNE+lKntlZvD0=[/tex] 为第一行,作一个可逆 矩阵 C线性替换[tex=2.929x1.0]PXsqtgI7q/lZDxaVyz7HMw==[/tex]是可逆的. 并且[tex=7.214x1.357]CKlOGn/4oc+CIjd/NrEXYPMrKY7YR6bQnYIT6RHXQTu8qoEKb6VulKEPDo2aARf1[/tex]经过这个线性替换化为[tex=14.0x1.5]AkjIkUm3A8xTId+eQbup8jVJ5WCY8ZEvFP7eZBuMDs/84VcqCOgufae/lwNxLY3y4xIWXk8hCWMuVKU/qQ8rdNHpJXYTed7P9yw2ZXMNLWM=[/tex]2) [tex=5.929x1.357]TASgeax8JPipKY1zvB3ZBmMEzx7q7j/UR1YZ6ry2qVtNVtHHNbkuqJsnNpZD/zq/[/tex] 与[tex=5.643x1.357]Ew8ljGDDVpo6o4AlVy204DlIuHOvc/cWZATXis1LvWr9ijpFU+5moWQ74trF/pzK[/tex] 线性无关. 于是可以 [tex=13.357x1.357]7+MiO15KYpAm4RMMrH9LVkUS6FKuP5zejp+1GJdFM/v2ioumzK0KBTG0z9a/ZAI0KBQLbJm6BvOqYXw78WaRyf0F7r3VLZriG6ukyFM7d0jPtuMnKuV6lIeRfBMH0EHo3hKkzl2L+xzT2vXbdgWJ5g==[/tex] 为第 1,2 行作一个可逆矩阵 C ,可逆线性替换[tex=2.929x1.0]nJgTkLDEMjll26nzSLOvgw==[/tex]将 [tex=7.214x1.357]CKlOGn/4oc+CIjd/NrEXYPMrKY7YR6bQnYIT6RHXQTu8qoEKb6VulKEPDo2aARf1[/tex] 化为[tex=10.071x1.357]AkjIkUm3A8xTId+eQbup8jVJ5WCY8ZEvFP7eZBuMDs/BROWYlRendYY4vt/a7a4nQl/9ED/xtPGMyLGJ5H5FLg==[/tex]再令[tex=8.0x5.786]GE56u9QCDTqcLxZ66HADyjMYMANBZcmqvl9VSvSe5IRMnO7LxgQZAuFqpSCUZU8j23YHckG3v4Lfsi+sZP5mydf6/yKAvoRpRE0i5ayEsRLK7XVH5RkWW4fgXkvmQsjaleWFJ7OLVEMtB5AJDMCngCk7fEoaEK3U+wIf4oKZLuo3ERC2ZR9gBaVyW9ZAHqvayRtH+4DB4EQ3eASe+Gs6Rg==[/tex]则[tex=10.714x1.5]AkjIkUm3A8xTId+eQbup8jVJ5WCY8ZEvFP7eZBuMDs+tYTR9sWfpbaYDeOYFjsDGgKeBolykmbvtnOyeNH95t6soxIj+bt2HLI+6AnZQBD0=[/tex]所以在这种情况, f$的秩等于 2, 符号差为 0 .2) 如果 [tex=7.214x1.357]CKlOGn/4oc+CIjd/NrEXYPMrKY7YR6bQnYIT6RHXQTu8qoEKb6VulKEPDo2aARf1[/tex] 的秩为 2, 符号差为 0,$则 [tex=7.357x1.357]CKlOGn/4oc+CIjd/NrEXYLW4n5M2XI9hH4cBs2Rw4SKy07DOOMPHipykw2jPFC31XqSsL4vdJnsCOQxYOqIJRA==[/tex]可经适当的可逆线性替换[tex=2.929x1.0]PXsqtgI7q/lZDxaVyz7HMw==[/tex]化为规范形[tex=24.429x4.786]qeiYnKXLEhyhuGRg8yLtr7qGcZTeV2VJr0wVtMF1ZiySg+AtTsp7U881nVpviZG3yOc/5CTXCbH2b8P+tQcVqjJTTzRo5sMfGb+kRoHd/HoyIWHeUSmfb313j/YMIefOK8SBrGsUWcSj3rgjD70R3UG/PhlcPrwaN9SeGbFZ+UVo1zHRgaeOqyRCeCdj8UeX7uVmFIkle+Fi059DEtryFuRb/9EFE7fayBtxSfHNnZCe3LLfydEBBCGyw+Tmf4H6m8iTBmsas4uEQBiSsjEi6iBzgmB6QHpGonIKdjG5V1C5m072XQSn7FfMgCBDbQDIjuzxYkaQJfLIVGrdIzXItJzrFBiwUqmj0VpPGJtoGU4C49NlQApe3MSZDNBCDaoj635cgfsBdtngwhaRJZHmQIM9AxNacV+mLs4z/Cn8ML89USChX3GM8MbKeQxoJEyOoyfGDQ7O3enBDNOkOg6t+ES4ois1w7EpH2zb83iRFHU=[/tex]这两种情形都说明[tex=7.214x1.357]CKlOGn/4oc+CIjd/NrEXYPMrKY7YR6bQnYIT6RHXQTu8qoEKb6VulKEPDo2aARf1[/tex]可以分解成两个实系数一次齐次多项式的乘积.

    内容

    • 0

      证明:[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元实二次型[tex=3.0x1.214]A3Jq5GaKRudu4m0pc9HYKQ==[/tex]是半正定的充分必要条件为它的正惯性指数等于它的秩.

    • 1

      证明:秩等于[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的对称矩阵,可以表示成[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个秩等于1 的对称矩阵之 和.

    • 2

      证明:秩等于[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的对称矩阵可以表成[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个秩等于 1 的对称矩阵之和。

    • 3

      证明:秩等于  [tex=0.5x0.786]c3XP7Nc5gbHP2NzYIVnjbg==[/tex]的对称矩阵可以表成[tex=0.571x1.0]C5fA+C2Kq7LRoadFKP5fTg==[/tex] 个秩等于  1  的对称 矩阵之和. 

    • 4

      实对称阵`\A`的秩等于`\r`,又它有`\m`个负的特征值,则它的符号差为 ( ) A: `\r-m` B: `\m-r` C: `\r-2m` D: `\m-2r`