• 2022-05-26
    设$z=x^2+xy+y^2$, $x=t^2$, $y=t$, 则$\frac{dz}{dt}=$
    A: $2x+y+x+2y$
    B: $t^4+t^3+t^2$
    C: $4t^3+3t^2+2t$
    D: $(2x+y)t^2+(x+2y)t$
  • C

    举一反三

    内容

    • 0

      下列程序的结果为().change(intx,inty){intt;t=x;x=y;y=t;}main(){intx=2,y=3;change(x,y);printf("x=%d,y=%d\n",x,y);} A: A)x=3,y=2 B: B)x=2,y=3 C: C)x=2,y=2 D: D)x=3,y=3

    • 1

      【填空题】曲线 x = t , y = t 2 , z = t 3 上的点 , , 在该点的切线平行于平面 x + 2 y + z = 4 .

    • 2

      设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z''_{xy}} = \)______ 。

    • 3

      曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$

    • 4

      运行下列程序段后,x的值是() int x=1,y=2,t=3; if(x>y) t=x; x=y; y=t;