设函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在复平面上解析,[tex=6.214x3.286]EGincEqMENd+VzQcOkMojkeF2+eAQcuR9uPb0I34UGaR6bzxev7GgHfSkNKAjsXu[/tex].求对任一正整数[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex], 函数 [tex=3.143x1.5]sxFfXQL5pQy3D/hmKqrpDw==[/tex]在点[tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex]的留数[tex=6.5x1.571]c8f8pYOWcLRchWEduA0fr+piFtDzZvThDqELlICsTycfQep6ioN0RT8sFtc1Ip/uzNZZDRpTy6owt5a0b+QsCA==[/tex].
举一反三
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 证明函数 [tex=5.357x1.571]+HTced+38IrMbDH4RQZC1JZwBsERgkhdCU4fpbNyWZc=[/tex] 在 [tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex] 处满足 [tex=2.286x1.143]eOgpJBpdLlZ6pmfgbZVtBw==[/tex] 方程,但 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex] 处不可导.
- 设一平面垂直于平面[tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex],并通过从点 [tex=3.786x1.286]8a+vzuX67SieAd06rLFfeQ==[/tex]到直线[tex=7.786x2.786]7EJHVCtO2IWq3KpdB+jQsu2TzFWJjsntDAyagYRwefkWw9jfgt9jfZ6m21aVjFCBB74g/x/pgO01mkmjdtcLYA==[/tex]的垂线,求此平面的方程。