设随机向量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合概率分布[tex=36.643x1.357]WSh0HWPdVHtO/QNDYp1wrOh+cEP2AuQ37qt6XKvbi94BZXaT5fmgChqCioZ2cY6JEtNYUzBup0QpM67K3FYCAk2EZPsuKrZ99BMrv1sY0vEKP5iQOkHAyUivPMH7l9KR[/tex] 判断[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
举一反三
- 设随机向量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合概率分布[tex=36.643x1.357]WSh0HWPdVHtO/QNDYp1wrOh+cEP2AuQ37qt6XKvbi94BZXaT5fmgChqCioZ2cY6JEtNYUzBup0QpM67K3FYCAk2EZPsuKrZ99BMrv1sY0vEKP5iQOkHAyUivPMH7l9KR[/tex]列出[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合概率分布表;
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=12.929x3.643]s59y2K1bDNChzmHwfrn1oZMscZzqsMzxrepmwWk2KcUQpqKd8yMS9MfWFtdr1CS+4zfy5v+85aA3CBgWf5+U9g==[/tex](1)求常数 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex];(2)试判断 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 假设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex] 上服从二维均匀分布。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=1.571x1.0]7wwDFuycAIG1Sh4qLOA3bg==[/tex];(2)问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?