• 2022-05-27
    下列方程中( )是一阶线性微分方程。
    A: \( 2{x^2}yy' = {y^2} + 1 \)
    B: \( xy' + {y \over x} - x = 0 \)
    C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \)
    D: \( y'' + xy' = 4{x^2} + 1 \)
  • B

    内容

    • 0

      下列方程中是线性微分方程的是( )。 A: \( \cos \left( {y'} \right) + {e^y} = x \) B: \( xy'' + 2y' - {x^2}y = {e^x} \) C: \( {\left( {y'} \right)^2} + 5y = 0 \) D: \( y'' + \sin y = 8x \)

    • 1

      设\(z = z\left( {x,y} \right)\)是由方程\({z^3}{\rm{ + }}3xyz - 3\sin xy = 1\)确定的隐函数,则\( { { \partial z} \over {\partial y}}=\)( ) A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\) C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)

    • 2

      下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)

    • 3

      设方程\({sinz} - x^2yz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { 2xyz} \over {\cos z - {x^2}y}}\) B: \( { { 2xyz} \over {\cos z + {x^2}y}}\) C: \( { { xyz} \over {\cos z - {x^2}y}}\) D: \( { { 2xy} \over {\cos z - {x^2}y}}\)

    • 4

      方程\( y' + {y \over x} = {1 \over { { x^2}}} \)在\( y(1) = 0 \)时可得通解中常量\( C = \)( )。______