设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是()。
A: [f(x)/g(x)]>[f(a)/g(b)]
B: [f(x)/g(x)]>[f(b)/g(b)]
C: f(x)g(x)>f(a)g(a)
D: f(x)g(x)>f(b)g(b)
A: [f(x)/g(x)]>[f(a)/g(b)]
B: [f(x)/g(x)]>[f(b)/g(b)]
C: f(x)g(x)>f(a)g(a)
D: f(x)g(x)>f(b)g(b)
举一反三
- 设f(x),g(x)在[a,b]上可导,且f"(x)g(x)+f(x)g’(x)<0,则当x∈(a,b)时,有( ). A: f(x)g(x)>f(b)g(a) B: f(x)g(x)>f(b)g(a) C: f(a)g(b)>f(b)g(a) D: f(x)g(x)>f(b)g(b)
- 设函数f(x),g(x)在[a,b]上连续且f(a)=g(a),在(a,b)上可导且f′(x)>g′(x),则当a<x<b时,有( ) A: f(x)>g(x) B: f(x)<g(x) C: f(x)+g(a)>g(x)+f(a) D: f(x)+g(b)>g(x)+g(b)
- 设函数f(x)和g(x)在区间(a,b)内均可导,且g(x)>0,f’(x)g(x)-f(x)g’(x)<0,则当x∈(a,b)时,有()。 A: f(x)g(a)>f(a)g(x) B: f(x)g(a)<f(a)f(x) C: f(x)g(x)>f(a)g(a) D: f(x)g(x)<f(b)g(b)
- 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有() A: f(x)g(b)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g()
- 【单选题】设f(x) g(x)是恒大于零的可导函数,且f’(x)g(x) - f(x) g’(x) < 0 , 则当 a< x < b 时,有 A. f(x)g(b) > f(b)g(x) B. f(x)g(a) > f(a)g(x) C. f(x)g(x) > f(b)g(b) D. f(x)g(x) > f(a)g(a)