设f(x),g(x)在[a,b]上连续,且f(x)+g(x)≠0,若,则______。
举一反三
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
- 设f(x)及g(x)在[a,b]上连续,证明:若在[a,b]上,f(x)≥0,且。
- 设f(x),g(x)在[a,b]上连续且g(x)A.B.C.D.
- 设函数f(x),g(x)在[a,b]上连续且f(a)=g(a),在(a,b)上可导且f′(x)>g′(x),则当a<x<b时,有( ) A: f(x)>g(x) B: f(x)<g(x) C: f(x)+g(a)>g(x)+f(a) D: f(x)+g(b)>g(x)+g(b)
- 设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0,