设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
举一反三
- 设f(x)及g(x)在[a,b]上连续,证明:若在[a,b]上,f(x)≥0,且。
- 设f(x)在[a,b]上连续,且f(x)不恒等于零,证明∫(a,b)[f(x)]²dx>0
- 设f(x),g(x)在[a,b]上连续,且f(x)+g(x)≠0,若,则______。
- 设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
- 设f(x)在[a,b]上连续,则f(x)在[a,b]上的平均值是( ) A: f(a)+f(b)2 B: ∫baf(x)dx C: 12∫baf(x)dx D: 1b-a∫baf(x)dx