求线性空间 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 与 [tex=12.929x1.571]jtIleu5M/Yavne/JtSC4EipP0zacFW4k7wivgqYBwEa2zumodCujJ69AZzxkFwNQB0UPSZbSkJvBxPLIzFUxqhxWjeir+0fCBQaie1+ZiEI=[/tex] 间的同构映射.
举一反三
- 证明: 实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 作为它自身上的线性空间与线性空间 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]. 同构.
- 令 [tex=12.143x2.786]pSCOUldRRliBGKoKusoPeyxHVDDBCRvg2aLZ3lSfrRhdCkZgBgO3yIc6UVxx5cGgV4+C+kzcZOykQY2nRMMHv3wE2kHEj7z7C3axbIglwQOx1DMdPp/CG0Zh0xphA/bK1+mlRFIZa9Eo4nMouD3fMg==[/tex]证明复数域 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 作为实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 上的线性空间与 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 同构, 并且写出一个同构映射.
- 已知空间 4 点 [tex=19.429x1.357]Ld4MEIHZvSvKQnQuEATwUdHQPq95xvmiBfa/vp7cWrbFhWkJjD5RJRcWG0Kbnai3[/tex].求[tex=3.143x1.214]BypMH6cWAb0x8gikbHmOkm8G6z9CQ+Rgr92Svssi5/0=[/tex]的面积.
- 采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]
- 采用基2频率抽取FFT算法计算点序列的DFT,以下()流图是对的。 A: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] B: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] C: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7] D: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7]