举一反三
- 有台三相异步电动机,其额定转速为[tex=4.571x1.357]A9lAaS6Mu7DUHhXmxVA4Cgq8WxnW22es/tBL1nBhR5Hrla3QmZ7F4+wFseKSXS1T[/tex],电源频率为[tex=2.214x1.0]wZfiUTvO/P0/okRaCZMlpn0Mrkl2tFKX/N7wZ/v+UiM=[/tex]。 在 [tex=1.286x1.357]eI2hypHs4HeMsk2hgpDlVg==[/tex] 起动瞬间, ( [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]) 转子转速为同步转速的[tex=0.786x2.357]tZBmV/C+mG/sCrR3mFYsUg==[/tex]时,[tex=1.286x1.357]wHlsQvJMhIK5srk8gOI5cw==[/tex]转差率为 [tex=1.786x1.0]ntKkS3op1LBzzk0bqZo4Mg==[/tex]时三种情况下,试求: 转子旋转磁场对定子的转速
- 某一[tex=2.214x1.0]wZfiUTvO/P0/okRaCZMlpn0Mrkl2tFKX/N7wZ/v+UiM=[/tex] 的三相异步电动机的额定转速为 [tex=4.571x1.357]2tV46GVD6Pnmx+c6M9z445q6L7+RWFmFCvv1s/VnkeSp/Shfy7ciNM2dyMbd66hC[/tex], 则其转差率为( )。 未知类型:{'options': ['3.7 \\%', '0.038\xa0', '2.5\\%'], 'type': 102}
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是( )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
内容
- 0
设 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合概率密度函数[tex=15.357x2.5]s59y2K1bDNChzmHwfrn1oSTsviLjQQg8wI3c526C3yzphma1gEnKmY1d0GOhcgpDrVk0S0HYvJc5zHg0mP64fWLTa9uXbGqrZeHsMUNHgnE=[/tex]试求:(1) 常数[tex=1.071x1.214]z0hROCnScDTSmsGIsah7lg==[/tex](2[tex=1.286x1.357]/uxB8bcBwZIIynmCK0zb3w==[/tex]的边缘概率密度;(3)[tex=5.714x1.357]hFwvmFy7d445I67u1TIsQQ==[/tex](4) 条件概率密度[tex=3.5x1.357]HORQgHJxZ7uz7C/XOzaMPQ==[/tex](5)[tex=7.857x1.357]NtXObZzFHwLX7QJ0M/bVDYIz97XcCiIe6f1XEIM9WY4=[/tex]
- 1
对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]
- 2
有容量分别为[tex=3.286x1.286]pCZ+fPe3X5XtlIcXCf6RGw==[/tex]和[tex=3.286x1.286]JjWMjbwalVPPThZBywJsLQ==[/tex]的独立随机样本得到下述观测结果, (X、 Y为观测值, f为频数)X 12.3 12.5 12.8 13.0 13.5 Y 12.2 12.3 13.0f 1 2 4 2 1 f 6 8 2现已知变量X、Y的总体均呈正态分布。请问在0.05的显著性水平下,可否认为这两个总体属同一分布?[tex=24.786x1.286]OVWwFMgiPzBDnRSqBYypUv4puOxaqZVbzeGoYhEt/ZwiQxP0kGgAAWuaJInyBhH09xLkSWqB6n3qd1WXaKpfvwUNfmmVSMJTzi4wz4IT6q4=[/tex][tex=8.429x1.286]AcUD6cTXhAghaQMem3GRbFMfFVpZHcyA3tP0z+S7RAk=[/tex] [tex=13.357x1.357]ZPe8nXNlBeMmW2cEA+D6DaqP/loFbcVH2QukDH1SMofLM6E74nDyl0WrH8imm/Ai[/tex]
- 3
判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 4
求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?