• 2022-05-27
    求由抛物线[tex=6.714x1.286]tEvqDEuZVIRphMzGk1qlkowoMXAAMkT/3AL8rWEsrYk=[/tex],[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴及直线[tex=2.357x1.286]+1uQITH0WA9VdOa9Vpywhg==[/tex]、[tex=2.357x1.286]LDBM3a5iO+K2ce8fZZomkQ==[/tex]所围成的图形的面积(如图)。[img=397x261]178353824493a18.png[/img]
  • 解:[tex=10.429x2.786]2H4BkRlUXjvir3BbPSMAR5hr0uGYZa99bjOxz3uLQoh8RUH9eR6kWqCm12YCtSPyhZFAf5X5+Rv034cQ0/Fz/w==[/tex][tex=8.5x2.643]Bl68/ngtySMgqw+9PwtUxdUbs0FUi5/QD0UKuMX+yKAUuKVqSE0rIwgXrP25/svC9G8AkVBdKv5x3oABM00zF6Gil4OgO/en6vx8XNa+mnI=[/tex][tex=9.429x2.0]7e3fQi4BHeNdOfKi4crcSctnHS+VlRLOjkCSAPr0chY=[/tex][tex=8.571x2.0]FpusBqZUkqjbX26UaAxjmK0OwEKLYyj35VVxMN1ec0458u/NRS6BZVn0KZUGERIp[/tex]。

    举一反三

    内容

    • 0

      求曲线[tex=5.071x1.286]uH0Myz592IvDLRRWY7nUH4MdxgVGFeIMcf3vmZIDQgs=[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+1uQITH0WA9VdOa9Vpywhg==[/tex]所围成的平面图形的面积[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex],并求该平面图形绕[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴旋转一周所得旋转体的体积[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]。

    • 1

      求由下列各曲线所围成的图形的面积:(1)[tex=4.214x1.286]wZoc3MR6o3mAG1QNg6zCAQ==[/tex]与[tex=4.929x1.286]zivQVsmBDV0+4MdLVCCmhg==[/tex](两部分都要计算);(2)[tex=3.357x1.286]gJM4eoWhlRDfzOksgx5ITQ==[/tex]与直线[tex=2.357x1.286]NnMv/nzON7uI2yXeeL/30w==[/tex]及[tex=2.357x1.286]DbxZR1Yb806Oy0xU84fgow==[/tex];(3)[tex=2.714x1.286]YMEhHQQC7xrUYw4w6xg0oA==[/tex],[tex=3.357x1.286]ZGdInxWiBSxntniC+GqWdw==[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex];(4)[tex=3.357x1.286]B4EvuocBo6bNmntvVOKr4Q==[/tex],[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴与直线[tex=3.357x1.286]uP7ejKKpSt1qkIGldvayww==[/tex],[tex=7.929x1.286]ytfQaplxqaavg9spAnbE9mhiuU7zgXV72LZTvCw7nKE=[/tex];

    • 2

      求微分方程[tex=9.143x1.286]oDMZwet8x7MfWk4y7m8nzewSvNVAk7jW+TguQERTv+rY8d4vLsegoOvfrCaG32G2[/tex]的一个解[tex=3.571x1.286]7PhPA+6l56/czcH4pIppzg==[/tex],使得由曲线[tex=3.571x1.286]7PhPA+6l56/czcH4pIppzg==[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]DbxZR1Yb806Oy0xU84fgow==[/tex]以及[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴所围成的平面图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转一周的旋转体体积最小。

    • 3

      求曲线[tex=2.714x1.286]Ld4H7F8ShuxekFj6Tu3TmfuBAf8CV3McUQjwjOgcsWs=[/tex],[tex=3.786x1.286]BQBaxI8k9F73aCnSHszVhg==[/tex],[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex]和[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]所围成的图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所成立体的体积。

    • 4

      设直线[tex=4.5x1.286]ccq0/nGXDMjmvFHumPpvwg==[/tex]与直线[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],及[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的梯形面积等于[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],试求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],使这个梯形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得旋转体体积最小[tex=5.643x1.286]kqxbGOHRCGvBSaXkOZEY+g==[/tex]。