有大小两个圆内切,半径比为2:1,大圆固定,小圆在大圆内切滚动(不滑动),设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为小圆上一固定点,则小圆在滚动过程中[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的轨迹是直线。
举一反三
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 试证:[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]若满足下列三个条件中的两个,则满足第三个.(1)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]对合(即[tex=3.286x1.286]UYeZQ7ctQhujC8g1CvD2aw==[/tex]);(2)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]正交(即[tex=4.143x1.286]ipHnU2E6ffERGyrFE1fc9kE2N9mFcWmeGSLHv9NAmP8=[/tex]);(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]对称(即[tex=3.429x1.286]qB0DVTOnJKxkmsLEs1Xg1Q==[/tex]).
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为n阶方阵,若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与所有n阶方阵乘法可换,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]一定是数量矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]仍为正定矩阵.
- 将两信息分别编码为[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]传递出去,接收站收到时,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]被误收作[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]的概率为0.02,而[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]被误收作[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的概率为0.01,信息[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与信息[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]传送的频繁程度为2:1,若接收站收到的信息是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],问原发信息是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的概率是多少?