A: 在\( ( - \infty , - 1) \)内为凸,\( ( - 1,0) \)内为凹
B: 在\( ( - \infty ,0) \)内为凸
C: 在\( ( - \infty , - 1) \)内为凹,\( ( - 1,0) \)内为凸
D: 在\( ( - \infty ,0) \)内为凹
举一反三
- 曲线\( y = {x^3} + 1 \)的凹凸性,说法正确的是( ). A: 在\( ( - \infty ,1] \)内为凸,\( [1, + \infty ) \)内为凹 B: 在\( ( - \infty ,0] \)内为凸,\( [0, + \infty ) \)内为凹 C: 在\( ( - \infty ,1] \)内为凹,\( [1, + \infty ) \)内为凸 D: 在\( ( - \infty ,0] \)内为凹,\( [0, + \infty ) \)内为凸
- 曲线\( y = 3{x^4} - 4{x^3} + 1 \)的凹、凸的区间为( ) 。 A: 在\( ( - \infty ,{2 \over 3}], \) \( [1, + \infty ) \)内为凸,\( [{2 \over 3},1] \)内为凹 B: 在\( ( - \infty ,0] \)内为凹,\( [0,{2 \over 3}] \)内为凸 C: 在\( ( - \infty ,0] \)内为凸,\( [{2 \over 3}, + \infty ) \)内为凹 D: 在\( ( - \infty ,0], \)\( [{2 \over 3}, + \infty ) \)内为凹,\( [0,{2 \over 3}] \)内为凸
- 曲线\( y = (x - 1){x^ { { 2 \over 3}}} \)的凹凸性,说法正确的是( ) . A: 在\( ( - {1 \over 5},0) \)内为凸,\( (0,{1 \over 5}) \)内为凹 B: 在\( ( - {1 \over 5},0) \)内为凹,\( (0,{1 \over 5}) \)内为凸 C: 在\( ( - \infty , - {1 \over 5}) \)内为凸,\( ( - {1 \over 5}, + \infty ) \)内为凹 D: 在\( ( - \infty , - {1 \over 5}) \)内为凹,\( ( - {1 \over 5}, + \infty ) \)内为凸
- 7. 函数$f(x) =|x| e^{-x}$的单调递减区间为 A: $[-\infty,0]$ B: $[1,\infty]$ C: $[0,1]$ D: $[-\infty,0] \cup [1,\infty] $
- 将函数\(f(x) = {e^x}\)展开成\(x\)的幂级数为( )。 A: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - \infty < x < + \infty )\) B: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - \infty < x < + \infty )\) C: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - 1 < x < 1)\) D: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - 1 < x < 1)\)
内容
- 0
函数$$y={{x}^{\frac{1}{x}}}\ \ (x>0)$$的单调递增区间为(). A: $$(\text{e},+\infty )$$ B: $$(0,\ \text{e})$$ C: $$(1,+\infty )$$ D: $$(0,\ 1)$$
- 1
将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)
- 2
函数$f(x) = 2x^3-3x^2$的单调递减区间为 A: $[0,1]$ B: $[-\infty,0] \cup [1,\infty] $ C: $[-1,1]$ D: $[-\infty,-1] \cup [1,\infty]$
- 3
将\(f(x)=e^x\)展开成\((x-3)\)的幂级数为( )。 A: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) B: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) C: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\) D: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)
- 4
将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)