A: 在\( ( - {1 \over 5},0) \)内为凸,\( (0,{1 \over 5}) \)内为凹
B: 在\( ( - {1 \over 5},0) \)内为凹,\( (0,{1 \over 5}) \)内为凸
C: 在\( ( - \infty , - {1 \over 5}) \)内为凸,\( ( - {1 \over 5}, + \infty ) \)内为凹
D: 在\( ( - \infty , - {1 \over 5}) \)内为凹,\( ( - {1 \over 5}, + \infty ) \)内为凸
举一反三
- 曲线\( y = 3{x^4} - 4{x^3} + 1 \)的凹、凸的区间为( ) 。 A: 在\( ( - \infty ,{2 \over 3}], \) \( [1, + \infty ) \)内为凸,\( [{2 \over 3},1] \)内为凹 B: 在\( ( - \infty ,0] \)内为凹,\( [0,{2 \over 3}] \)内为凸 C: 在\( ( - \infty ,0] \)内为凸,\( [{2 \over 3}, + \infty ) \)内为凹 D: 在\( ( - \infty ,0], \)\( [{2 \over 3}, + \infty ) \)内为凹,\( [0,{2 \over 3}] \)内为凸
- 当\( x < 0 \)时,函数曲线\( y = {x \over { { x^2} - 1}} \)的凹凸区间为( ) 。 A: 在\( ( - \infty , - 1) \)内为凸,\( ( - 1,0) \)内为凹 B: 在\( ( - \infty ,0) \)内为凸 C: 在\( ( - \infty , - 1) \)内为凹,\( ( - 1,0) \)内为凸 D: 在\( ( - \infty ,0) \)内为凹
- 曲线\( y = {x^3} + 1 \)的凹凸性,说法正确的是( ). A: 在\( ( - \infty ,1] \)内为凸,\( [1, + \infty ) \)内为凹 B: 在\( ( - \infty ,0] \)内为凸,\( [0, + \infty ) \)内为凹 C: 在\( ( - \infty ,1] \)内为凹,\( [1, + \infty ) \)内为凸 D: 在\( ( - \infty ,0] \)内为凹,\( [0, + \infty ) \)内为凸
- 设幂级数\(\sum\limits_{n = 0}^\infty { { a_n}} {x^n}\)与\(\sum\limits_{n = 1}^\infty { { b_n}{x^n}} \)的收敛半径分别为\( { { \sqrt 5 } \over 3}\)与\({1 \over 3}\),则幂级数\(\sum\limits_{n = 1}^\infty { { {a_n^2} \over {b_n^2}}} {x^n}\)的收敛半径为( )。 A: 5 B: \( { { \sqrt 5 } \over 3}\) C: \({1 \over 3}\) D: \({1 \over 5}\)
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
内容
- 0
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- 1
函数\( y = x + \sqrt {1 - x} \)的极大值为( ) A: 0 B: 1 C: \( {5 \over 4} \) D: \( {4 \over 5} \)
- 2
将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)
- 3
将函数\(f(x) = {e^x}\)展开成\(x\)的幂级数为( )。 A: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - \infty < x < + \infty )\) B: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - \infty < x < + \infty )\) C: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - 1 < x < 1)\) D: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - 1 < x < 1)\)
- 4
将\(f(x)=e^x\)展开成\((x-3)\)的幂级数为( )。 A: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) B: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) C: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\) D: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)