深度学习与传统的机器学习最主要的区别在于( ),即随着数据规模的增加,深度学习的性能行业不断提高。而当数据很少时,深度学习算法的性能并不好。
A: 特征处理
B: 数据依赖性
C: 问题解决方式
D: 硬件依赖
A: 特征处理
B: 数据依赖性
C: 问题解决方式
D: 硬件依赖
举一反三
- 深度学习与机器学习最主要的区别在于______,即随着数据规模的增加其性能也不断增长。当数据很少时,深度学习算法的性能并不好。 A: 特征处理 B: 硬件依赖 C: 数据依赖性 D: 问题解决方式
- 与传统的分类机器学习算法相比,深度学习网络不同之处不是下面哪项? A: 不需要人工进行特征工程,深度学习算法本身具有一定的特征提取能力 B: 深度学习算法需要的数据量和算力更大,但性能更好 C: 深度学习算法不需要对数据进行预处理 D: 深度学习的算法解释性一般比较弱,对数据依赖性强
- 有关深度学习的说法,哪个是正确的? A: 深度学习可以解决任意的机器学习问题 B: 深度学习比较适合处理有大量样本的视频、图像、声音、文本等多模态数据的分析,这些数据的分析需要人工进行特征提取,这是与传统的机器学习不同的 C: 对于分类问题,深度学习算法一定优于传统的机器学习算法 D: 深度学习的基础是神经网络,因此深度学习算法基本可以使用梯度下降法
- 深度学习尝试从数据中直接获取高等级的( ),这是深度学习与传统机器学习的主要不同。 A: 特征 B: 数据 C: 像素 D: 纹理
- 与传统的分类机器学习算法相比,深度学习网络不同之处是下面哪些项? A: 深度学习算法对数据预处理没要求 B: 不需要人工进行特征工程,深度学习算法本身具有一定的特征提取能力 C: 深度学习算法需要的数据量和算力更大,但性能更好 D: 深度学习的算法解释性一般比较弱