若f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0及存在c,使f(c)>0(a
举一反三
- 设f(x),g(x)在[a,b]上连续,f'(x),g'(x)在(a,b)内存在,证明:[tex=17.786x3.357]Uyz5s0rmQIddjb5Jc2T/YRSnI70CPiP9kSoxG/LsBEQsOFwZaIYio/xDEuz4rvImZ3GEM+gn+IQRe1Rq9HOufvnQiCWpcE11pvqN0xZJm/9KE+3ILJyinkbz30kkqN83nBVLYkFVQ5Q6bXnW5mivpRYmOIa68RyGaPOOBgZpbqIs0vbZIm+NG7i5KeSOpSw25GXWnjDh4XFSb/YU/DTLhRFsqEAar70PWY11q/CwycKXYOjkDRYRk8aKw6BcLHjIh1xbd4EKeQm+5a6T3/Mwrr+JtOiMIE4uj0wKS8tAEqo=[/tex]其中[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex]在a和b之间。
- 设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]
- 中国大学MOOC: f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,那么方程f(x)g(x)+f(x)g(x)=0在(a,b)内存在实根。
- 设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: