设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
举一反三
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
- 设f(x),g(x)在[a,b]上可导,且f"(x)g(x)+f(x)g’(x)<0,则当x∈(a,b)时,有( ). A: f(x)g(x)>f(b)g(a) B: f(x)g(x)>f(b)g(a) C: f(a)g(b)>f(b)g(a) D: f(x)g(x)>f(b)g(b)
- 设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0,
- 设f(x)及g(x)在[a,b]上连续,证明:若在[a,b]上,f(x)≥0,且。
- 设函数f(X),g(X)在[a,b]上连续,在(a,b)内可导,且在(a,b)上f′(x)≦g′(x),则有f(b)-f(a)≦g(b)-g(a)