质量为[tex=1.357x1.214]QcSZflolD/TZzu4WluEs9g==[/tex]的均匀金属杆长为[tex=0.357x1.0]s/GoTwfodlUYfjZgjlUDtA==[/tex],其延长线左侧[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]处有一质量为[tex=1.357x1.214]co/LzrcNlOGwBi+lPiD7Rg==[/tex]的小球,求棒对小球的万有引力.
举一反三
- 求一质量为 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 的均匀半圆弧对位于其中心的质量为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 的质点的引力。
- 有一半径为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 质量为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 的均匀半圆弧,求它对位于圆心处的单位质量的质点的引力.
- 一根长为 [tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex] ,质量为 [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex] 的均匀直棒,在它的一端垂线上跟棒 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 处有质量为 [tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex] 的质点,求棒对质点的引力.
- 一根长为 [tex=0.643x1.214]Q0YRdDCCld2de3GjTtlj4g==[/tex] 质量为 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 的均匀细直棒,在棒的延长线上距棒的右端点 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 单位处有一质量为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 的质点,若将该质点沿棒的延长线 从 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 处移至 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 处 [tex=2.857x1.357]DW+zn9nQZjkC8xOlLbs5dw==[/tex] 试求克服引力所做的功.
- 如图所示,刚体由长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],质量为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]的匀质细杆和一质量为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]的小球牢固连结在杆的一端而成,可绕杆的另一端[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]点的水平轴转动.先将杆拉至水平然后让其自由转下.若轴处摩擦可以忽略,求当杆与竖直线成[tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]角时,刚体的角速度[tex=0.929x0.786]KFusbeiiFhA9jT9PbEj0fg==[/tex][img=200x174]17a10c748b442ce.png[/img]