设`\A`是3阶矩阵,将`\A`的第1列与第2列交换得到`\B`,再把`\B`的第2列加到第1列得`\C`,则满足`\AP=C`的可逆矩阵`\P` ( )
A: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&{\rm{1}}&{\rm{1}}\\0&0&1\end{array}} \right]\]
B: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\{\rm{1}}&0&1\end{array}} \right]\]
C: \[\left[ {\begin{array}{*{20}{c}}1&{\rm{0}}&0\\1&{\rm{1}}&0\\0&0&1\end{array}} \right]\]
D: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\0&0&1\end{array}} \right]\]
A: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&{\rm{1}}&{\rm{1}}\\0&0&1\end{array}} \right]\]
B: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\{\rm{1}}&0&1\end{array}} \right]\]
C: \[\left[ {\begin{array}{*{20}{c}}1&{\rm{0}}&0\\1&{\rm{1}}&0\\0&0&1\end{array}} \right]\]
D: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\0&0&1\end{array}} \right]\]
举一反三
- 设`3`阶实对称矩阵`A`满足`A^3+A^2=0`, 则`A`相似于对角阵`\Lambda =` A: \begin{bmatrix} 0 & 0 &0 \\ 0 & 0& 0 \\ 0 & 0 & 1 \end{bmatrix} B: \begin{bmatrix} 1 & 0 &0 \\ 0 & 0& 0 \\ 0 & 0 & -1 \end{bmatrix} C: \begin{bmatrix} 0 & 0 &0 \\ 0 & 0& 0 \\ 0 & 0 & -1 \end{bmatrix} D: \begin{bmatrix} 1 &0 &0 \\ 0 & 1& 0 \\ 0 & 0 & -1 \end{bmatrix}
- 设A为3阶矩阵,将A的第二列加到第一列得到矩阵B,再交换B的第二行和第三行得单位矩阵,则矩阵A为( ) A: \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} B: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\-1 & 1 & 0 \end{bmatrix} C: \begin{bmatrix} -1 &1 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} D: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix}
- 设\(E\)是初等阵,表示第3行减去第1行的7倍,则\(E^{-1}=\) A: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & -7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)
- 设\( A \)为三阶方阵,将\( A \)的第1列与第2列交换得\( B \),再把\( B \) 的第2列加到第3列得\( C \),则满足\( AQ = C \)的可逆阵\( Q \)为( ) A: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 1 & 0 & 1 \cr } } \right) \) B: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 1 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 1 & 1 \cr } } \right) \) D: \( \left( {\matrix{ 0 & 1 & 1 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
- 下列矩阵中,不是初等矩阵的是( ) A: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & { - 3} & 0 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 1 & 3 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 0 & 3 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right) \)