求n^2(e^(2+1/n)+e^(2-1/n)-2e^2)的极限,n趋于无穷,
举一反三
- 求极限lim_{n-无穷}n^2/(2n^2+1)=() A: 0 B: 1 C: 1/2 D: 3
- 设`\A`为`\n \times n`矩阵,且`\(A + E)^2 = O`,则`\A^{-1}=` ( ) A: `\- (A + 2E)` B: `\- (A + E)` C: `\- 2(A + 2E)` D: `\- 2(A + E)`
- 平均值与最大值之间的关系是()。 A: E\n=(2/π)E\n B: E\n=(π/2)E\n C: E\n=2E\n D: E\n=(1/π)E
- 2^n.sinπ/2^n(n趋近无穷),求极限,用两个重要极限公式求
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]