A: 0
B: 1
C: 1/2
D: 3
举一反三
内容
- 0
设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 1
下面程序的功能是输出以下9阶方阵。请填空。 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 # include int main( ) { int a[10][10],n,i,j,m; scanf("%d",&n); if(n%2= =0) m=n/2; else( ); for(i=0;i m=n/2+1 n–i–1 n–i–1
- 2
n^2*(x^1/n-x^1/n+1)n趋近于正无穷,x大于0求极限
- 3
在下列六组量子数中,正确的是① n=3,l= 1,m=-1 ② n = 3,l= 0,m = 0③ n = 2,l= 2 ,m=-1 ④ n = 2, l = 1 ,m = 0 ⑤ n = 2,l = 0,m =-1 ⑥ n= 2,l = 3 , m= 2 A: (1),(2),(4) B: (2),(4),(6) C: (1),(2),(3) D: (1),(3),(5)
- 4
有六组量子数: (1) n=3,l=1,m=-1;(2) n=3,l=0,m=0;(3) n=2,l=2,m=-1;(4) n=2,l=1,m=0;(5) n=2,l=0,m=-1;(6) n=2,l=3,m=2 其中正确的是( )。 A: (1)(3)(5) B: (2)(4)(6) C: (1)(2)(4) D: (1)(2)(3)