用于缓解过拟合问题的方法有哪些?
A: 获取更多数据
B: 使用合适的模型
C: 正则化
D: dropout
A: 获取更多数据
B: 使用合适的模型
C: 正则化
D: dropout
举一反三
- 下列哪些方法可以用来降低深度学习模型的过拟合问题( )。 A: 增加更多的数据 B: 提前停止训练 C: Dropout D: 正则化代价函数
- 下列的哪种方法可以用来降低深度学习模型的过拟合问题? A: 增加更多的数据 B: Early stopping C: Dropout D: 正则化代价函数
- 常用的神经网络优化方法(避免过拟合,提高模型泛化性)有哪些()。 A: earlystopping B: 数据集扩增 C: 正则化(Regularization) D: Dropout
- 以下哪些方法可以减少过拟合( ) A: 降低模型复杂度 B: 使用集成学习方法 C: 正则化 D: 增加更多数据
- 以下哪些方法有助于解决模型训练过程中的过拟合问题? A: 正则化 B: Dropout C: Batch Normalization D: 提前终止训练 E: 梯度下降