证明环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 中乘法对于减法的分配律, 即对任意的 [tex=4.0x1.214]GSnbIj4aRuMumwY+9IZbqV4wnTLBrtadgoPGr6FiWUA=[/tex] (1)[tex=7.286x1.357]+CQzWFCwGZG7O5fkJNIzdlskLkWvdn0gETZFqU3Qhcs=[/tex] (2) [tex=7.286x1.357]UNJZuA7jM78cXo7ICRmuFKldYxWUXFalqseKVaWlx7M=[/tex]
举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 假定 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是模 7 的剩余类环,在 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 里把乘积[tex=13.5x1.571]1mozSZPmTDk0iZAfoGbSXnOelqTN0/dkYhjcU65OdFp1ann7b44m9v7d3WfJanWB51HbTxs3hwJeYJ5JgYjybafXVKfcHeBaMrNZWSFEF0c=[/tex]计算出来.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的环. 证明: 环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的可逆元全体 [tex=2.286x1.357]VSrq2EBbjY/lzOCsf2jcIg==[/tex] 关于环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的乘法构成群.
- 证明命题 3. 7.注 命题 3. 7 如下:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环,[tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个理想.(1)若[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个理想且[tex=2.357x1.143]dFK0pllFt/zWEC+crtFExA==[/tex], 则 [tex=1.5x1.357]DQDKvU4BxJ/UC33T+mY9sw==[/tex] 是[tex=1.714x1.357]ceJTjldMkJXWCHatl5T1Jg==[/tex]的理想;(2)若[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]是[tex=1.714x1.357]sU/Eol/VzF4h4tpIDEJ9Ag==[/tex]的一个理想, 则存在 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex], 使[tex=2.357x1.143]dFK0pllFt/zWEC+crtFExA==[/tex]且[tex=3.286x1.357]lODhOYSHJTAF/Tk9pX1cLA==[/tex]
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构.