f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( )
A: f(x)=g(x)
B: f(x)=g(x)=0
C: f(x)-g(x)为常数函数
D: f(x)+g(x)为常数函数
A: f(x)=g(x)
B: f(x)=g(x)=0
C: f(x)-g(x)为常数函数
D: f(x)+g(x)为常数函数
C
举一反三
- 【单选题】f(x) 与g(x) 是定义在 R 上的两个可导函数,若 f(x),g(x)在R上导数相等 ,则f(x) 与g(x) 满足() A. f(x)=g(x) B. f(x)-g(x)为常数 C. f(x)=g(x)=0 D. f(x)+g(x)为常数
- 设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
- 设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有( ) A: f(x)g(x)>f(b)g(b) B: f(x)g(a)>f(a)g(x) C: f(x)g(b)>f(b)g(x) D: f(x)g(x)>f(a)g(a)
- 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有() A: f(x)g(b)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g()
- 若函数F(x)与G(x)都是f(x)的原函数,则F(x)-G(x)=( ) A: F(x) B: G(x) C: 常数
内容
- 0
设函数f(x),g(x)是大于零的可导函数,且f'(x)g(x)-f(x)g'(x) A: f(x)g(b)>;f(b)g(x) B: f(x)g(a)>;f(a)g(x) C: f(x)g(x)>;f(a)g(a) D: f(x)g(x)>;f(b)g(b)
- 1
设f(x),g(x)(a<x<b)为大于零的可导函数,且f"(x)g(x)-f(x)g"(x)<0,则当a<x<b时,有______. A: f(x)g(x)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g(a)
- 2
观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,又归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=______. A: f(x) B: -f(x) C: g(x) D: -g(x)
- 3
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 4
设函数f(x)和g(x)在区间(a,b)内均可导,且g(x)>0,f’(x)g(x)-f(x)g’(x)<0,则当x∈(a,b)时,有()。 A: f(x)g(a)>f(a)g(x) B: f(x)g(a)<f(a)f(x) C: f(x)g(x)>f(a)g(a) D: f(x)g(x)<f(b)g(b)