举一反三
- 密度为 [tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex] 均匀柔软的细弦线在 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]端固定,在重力作用下,垂直悬挂,横向拉它一下,使之做微小的横振动.试导出振动方程.
- 一长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex] 、横截面积为[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的均匀弹性杆,已知一端[tex=2.643x1.357]AVAE+AL0qWAPC4WuhTdc2Q==[/tex]固定,另一端 [tex=2.429x1.357]9cIg04tQHvC3EPnGa4OFxA==[/tex]在杆轴方向上受拉力[tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]的作用而达到平衡 (见图 11.6). 在[tex=1.643x1.0]MVeOYouc7e3FvU1m5bCV6w==[/tex] 时,撤去外力[tex=0.857x1.0]IxjmseF0LE9+oZ2UdgwhLA==[/tex].试列出杆的纵振动所满足的方程、边界条件和初始条件.[img=315x116]1790ec272771fb0.png[/img]
- 导出均匀弦在阻尼介质中的微小横振动方程,设弦的单位长度所受的阻力与振动速度成正比(比例常数为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]).
- 一长为l的弦两端固定,在开始的时刻弦在平衡位置,用宽为[tex=1.0x1.0]n6gFQY8INNupwCoF50b1Vw==[/tex]的平面锤敲击弦的中点,使弦的长为[tex=1.0x1.0]n6gFQY8INNupwCoF50b1Vw==[/tex]的小段得到初始速度0。试求弦自由振动的情况。
- 研究长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],一端固定,另一端自由,初始位移为[tex=1.214x1.0]oRQs3fUc5jUXOKKnlCZAtw==[/tex]而初始速度为零的弦的自由振动情况。
内容
- 0
设直线[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]经过点[tex=3.643x1.357]D3EcWH0pI78PtNfPBxDirw==[/tex],则当[tex=3.643x1.357]9qBADjg+LLPtSC1AIFyxKQ==[/tex]与直线[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的距离最远时,直线[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的方程为[input=type:blank,size:4][/input]。
- 1
长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]、两端固定的均匀弦在某介质中作自由微小振动,设这介质的阻力与速度成正比(单位长度的阻力为[tex=2.786x1.214]CT5uJ4aI6gFTR63zjj1QdNcnBMfAxFzsC1SVYIJTTE0=[/tex], [tex=0.643x0.786]W9TCskxkagdDgWMvasdFzg==[/tex]是正的小常数),弦的初始位移和初始速度分别为[tex=2.071x1.357]eAvaTAXWWX5VwHAZCgurVQ==[/tex]和[tex=2.0x1.357]oY9H+horQavhEg7hGhdwWA==[/tex],求解访的振动情况.
- 2
在弦的横振动问题中,若弦受到一与速度成正比 (比例系数为[tex=1.429x1.071]XLuTN1EE1rjQxsll4MHVCA==[/tex])的阻尼,试导出弦的有阻尼振动方程.又若除了阻尼力之外,弦还受到与弦的位移成正比 (比例系数为[tex=1.357x1.143]UL5g4tdnvvaLw5ET4kbzEA==[/tex])的回复力,则此时弦的振动满足的方程是什么?
- 3
一长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex] 、横截面积为[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的均匀弹性细杆,已知[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]的一端固定,在[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]的一端在杆轴方向上受拉力[tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]作用而平衡,在[tex=1.643x1.0]MVeOYouc7e3FvU1m5bCV6w==[/tex]时撤去外力,并忽略重力的作用,试列出杆的纵振动所满足的方程、边界条件和初始条件.
- 4
一均匀杆原长是[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],一端固定,另一端沿杆的轴线方向被拉长[tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex]而静止,突然放手任其振动,试建立振动方程和定解条件.