一端固定的弦长为l,另一端受横向外力作振幅为A周期为T的简谐振动,设初始位移和初始速度均为0,写出弦振动
举一反三
- 研究长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex],一端固定,另一端自由,初始位移为[tex=1.214x1.0]oRQs3fUc5jUXOKKnlCZAtw==[/tex]而初始速度为零的弦的自由振动情况。
- 【简答题】求解无限长弦的自由振动,设弦的初始位移为 ,初始速度为 ,其中 为振动速度
- 设有一根长为L的均匀柔软的弦做微小横振动,其平衡位置是x轴的区间[0,L].让u表示横位移,弦的线密度为ρ,张力大小为T.在振动过程中,受到一阻力,阻力的大小与位移速度成正比,比例系数为k.设初始位移为[tex=2.0x1.357]oY9H+horQavhEg7hGhdwWA==[/tex],初始速度为0.在x =0端固定,在x=L端有一弹性支撑,弹性强度为k.试写出弦的位移u(x,t)所满足的定解问题.
- 半无限长弦的初始位移和初始速度都为0,端点振动规律为 [tex=7.143x1.357]ovdf6hJlCCEUr1UrG9g96LyVrvg4qPokP/F3UTedPMU=[/tex]求解半无界弦的振动规律.
- 求解无限长弦的自由振动,设弦的初始位移为[tex=2.071x1.357]Wcz3USjhGhKpAyRt+u5BdA==[/tex],初始速度为[tex=3.571x1.429]vS5XtdtZPo9P8Dp/XjpbYzzQaUxoPsGs3s+pAY4CfFQ=[/tex].