• 2022-07-23
    求下列函数的一阶和二阶微分( [tex=2.143x1.0]4UtdoATYkKYd/cmJ5vuznw==[/tex]为自变量):[tex=4.429x2.357]u96cWA92VxDu0q6E9BQ/FnyDEzfa7mkkE2bxJ8UATxs=[/tex]
  • 解[tex=27.643x3.0]7XmVVnRzaAIqWEUZpuHq8rDSm1OKXivOhT/+YFMV9ydX3lwrn/w3rqbNVFMdH0rCK1MVY2wwHMyHbBEe9g2JUGBuHSC4HKsWtkLHrJVK7eIvtqh+M4lU//0AdmjAj4aJRCTO0YpMb5I2rL3GTGIVJ7qRIPU3nT9ifJyPlFzgkrzzqmv05wMaT2769pA9UsgQzQJZMtVnV4D0xQY6TVdvLACHWHSeT/mwf0EVGjucIv4=[/tex][tex=37.143x7.214]2dud32/VrnUXoYBR1/b4H7lCP0sXQkMtOrwbnDr5Y3RLXFF34foWimw3TzTqXv3wsEeCw+KjNpdO56dPnDztiey/kZiRYNfpfg1dLKsGxv0TyCTevpbhDPgvL220yO4p3T7NW+8s9xlX64ozXXV9+27Hij5i/bgSuAfUDvskyXLziUpv1abdOIP8m8e5U1MWflEiDj/Dn8G+AEKxs9z4CmAAp2PpJCOnw/LNDcYE1mFlWD5O3llNG046hnHy6iDns9xxI9HMbd8RUeEg7FxqaX4PcEVrCqISWhN0S0K6QjYbxIpKxnuFEoHolXSH65L9QMjx5HcRBXNYQdUFud0kiD4mog3C6I3qG7NN1ctwp8UzxLPoZyKKxGNRHDfGrd6hAncRYJqAh+mfrRuW458BffBL2EyqfyEnEjOq6daqNclxMt8A1/aN0epOTIwGsu4VqPzQQHO7F+Pc475KpQuQDnAq/QJL2vilKEgf+rqFJxcSz4UkvyKoeN4xIJcqxemQsptSMBmmf9cpI6ttVxwhAZ0m/FAD9pe5BAPOEK5LSzV/9K+S3vRAHDwYoYblPGFbFBgtSKUqPYHuZptl8RIgoz5y6ruuu0WFCfLLN22F7j/RLKg7XOQOkvjLm5F9zoRzTDNcuyaEt2bBPwbqXteJmuHsVEEOxFk1fZK0bRj9jvU=[/tex]

    内容

    • 0

      视x为自变量,求[tex=5.714x1.214]Sughz0k2bFffhwWhjeT7nK4KaNHsy2lKRWEwpoNHLr8=[/tex]指定阶的微分[tex=1.714x1.429]ylSQAr0yVQKkr83kW6Evv1PVJDMIgzTPdRAsr6oU4hA=[/tex]

    • 1

      视x为自变量,求[tex=4.929x1.214]jRw3EPBnB4KQX6uf+54iYg==[/tex]指定阶的微分[tex=2.929x1.429]7tBg9I1DnHwoPKHxpsBlFNDXSnU473QpkX8Ooh3FUo0=[/tex]

    • 2

      视x为自变量,求[tex=2.571x1.429]jXIfs5L5sNwSg39JyV6FQA==[/tex]指定阶的微分[tex=1.714x1.429]JS8uQDLmOKRhtNZ3Qs36Y2DYURgYOET9hgQzpLFCJDQ=[/tex]

    • 3

      求下列复合函数的一阶和二阶全微分 ([tex=1.571x1.0]Lze7444TPJPMr7EzEPKK/Q==[/tex]及 [tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex]为自变量):[tex=5.429x1.357]UyyAEe6dW7QSd0y7Y/eFLg==[/tex]

    • 4

      视x为自变量,求[tex=4.214x1.214]/bMzoNPkMGqIXVfV4w5BWlrtx0+Qy7c7KcmvJOMVjrw=[/tex]指定阶的微分[tex=1.5x1.429]ah+rq38CvvKHjb7z4cltHHiylvGXb7B45Yp8K9Db/34=[/tex]