已知 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内 [tex=2.429x1.429]8zZVMwInlTyvX3vMKAmtRuI1jZWseBCNHDYcFimri6s=[/tex] 存在,设连结 [tex=8.357x1.357]Da47VUEvf2fH4ROeqMo0W4Gz0RKogDB+K7oQvraKWHc=[/tex]两点的直线与曲线 [tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex]在异于 [tex=2.0x1.214]roKsNiDjOC9ms57y1griGQ==[/tex]点的另一点[tex=4.071x1.357]+/9m3FM4AKXa/eMWXwUBUQ==[/tex] 相交, [tex=3.286x1.357]9Z7NK3I/8jxvEl6tyFQjrQ==[/tex], 试证在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内至少有一 点 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex], 使 [tex=3.571x1.429]79SmwT+8J9VTqKDgDEyFq/SmlIX6h7uHWyDZl6g9tV0=[/tex]
举一反三
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]存在,又连接[tex=8.357x1.357]Da47VUEvf2fH4ROeqMo0W4Gz0RKogDB+K7oQvraKWHc=[/tex]两点的直线交曲线[tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex]于点[tex=3.929x1.357]V3dYvarpZXgMU977gRdItQ==[/tex],且 [tex=4.071x1.071]FkFsuaALhq4dQKc6bPMX+g==[/tex],试证:在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex],使得[tex=3.571x1.429]79SmwT+8J9VTqKDgDEyFq5kl2yo3HGcoTBR0LpL7hq4=[/tex]。
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 均在区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,而 [tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内存在, [tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex] 且在区间 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内存在点[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex], 使 [tex=3.571x1.357]Ae0+MLPjHrEQQfkynMVIuA==[/tex] 求证:在区间[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内至少存在一点 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex], 使得 [tex=4.071x1.429]79SmwT+8J9VTqKDgDEyFq6pmbgnCr+Bs7EkXECfy+oM=[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导,证明: 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内至少存在一点 [tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex]使得 [tex=11.429x2.5]G6iT5PwDUgfpVKfTn6zZJGq2U4kHdsBukmT86qP9BOAu2gg9pK88T0fMrQyFpPHflUhjXEa3oUR6Fxkuajchbg==[/tex].
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]不为线性函数,试证在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少有一点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使得[tex=9.0x2.786]k5WmVyEs7pZLED18JtYsUG0DCxPqBPT3sQyhFJL9buICR+RaReEFBvl0+5KOziYhFCy4p6mhfCZDP5WJbdU/erPZe4u9a5cqzPsFeeIB818=[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导[tex=5.214x1.357]AVFKOLSdVhcnohDkv1+6qw==[/tex]证明: 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内至少有一点 [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex], 使得 [tex=12.643x1.571]S3IVob1zesjaIa3eDm+Jf9cIKAW48GTVLbAWq0qEutN3ND/uFlJQqMDgw077SM9OcapPx9gVfUovwUPXwTK3rg==[/tex]