举一反三
- 给定[tex=3.571x1.357]0jgNZNb5KE0SpRQgBt7oQg==[/tex],设x=0是4重插值节点,x=1是单重插值节点试求相应的Hermite插值公式,并估计误差[tex=4.071x1.357]ZHsKcW72rLaSaexOsDovRw==[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的定义域是 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex], 求函数 [tex=4.286x1.357]+60BlNaw6ZUDoNLtoH2hwQ==[/tex] 的定义域..
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的定义域是 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex], 求函数 [tex=3.857x1.571]jY8meJPBHKC52P1x8Eyc8no9RGX+gKgpVaEU5/e5ReM=[/tex] 的定义域.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的定义域是 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex], 求函数 [tex=4.929x1.357]h7eWmw/XwEsBN2gkdn2cE+ChxKSvsB963aTwfVySVCc=[/tex] 的定义域.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]上连续,且[tex=3.714x1.357]iCcdn1e6v1rhSRtSamXMNA==[/tex],证明[tex=8.5x2.643]axGm1XPXlTyQvz6OBE6Xmn0ytle1W7R2CpZJmDXDgVhZGN69vo9N2TnA6p/on2W3[/tex]在[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上只有一根。
内容
- 0
已知[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是以2为周期的周期函数,且在[tex=2.0x1.357]BKlvvhPbvHmrH3NqEoQqGQ==[/tex]上有[tex=3.643x1.5]/C1UNKhjcg4SoGLfWhelmw==[/tex],求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]S9Knzv0BvymT1xFCEVwi7w==[/tex]上的表达式.
- 1
设 [tex=7.857x1.571]YPqHFuAahknf9AbHQjYMYvwG2Z4uR4XHF1WwqETF1CI=[/tex] 在 [tex=5.071x1.143]WbFHLHyJoSkbfDEfXR/tLcVjcSyr2pX9QdzN43wf6xQ=[/tex] 上取 [tex=2.714x1.214]+/r48fIEUYRtkCIw7Xyzkg==[/tex] 按等距节点求分段线性插值函数[tex=2.5x1.357]stiH941sUDFRKJvghdJAmQ==[/tex]计算各节点间中点处的[tex=2.214x1.357]F553BFjbBQ55xruo9OuGQA==[/tex]与 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的值,并估计误差.
- 2
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex] 上连续,且[tex=6.0x2.786]388S0HIqirGk5XoWsuogsDXJkocYmuT8+v2HFbn6jok=[/tex], 证明 : 存在 [tex=3.357x1.357]BsjbQo5VxYXTRwty7i/6ug==[/tex], 使得[p=align:center][tex=6.857x1.357]XY7JC6DRxDlBumWPQU62gnZ5AhHjWw1CSZfJzRrMLFM=[/tex]
- 3
对函数[tex=2.214x2.357]Hqxa/UCqq6/+StWVpW6nUr/ywv3F3oCfiNclBLHvryo=[/tex] , 在区间[tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]上用等距线性插值、等距[tex=3.857x1.0]aSjk4o7nmJkfQs7mJKmLIA==[/tex]3 次插值、等距样条插值,问步长[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]应取多少才能保证各自的截断误差小于[tex=2.0x1.214]FpeOfmuZawZqwM2eXSPGDw==[/tex] ?
- 4
设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是[tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]中的不可测集,令[tex=11.929x3.071]0Oc6OdDyTxw5ASPscCgHyWfU1471GKC1BYEnY7gvGnIeyTHPIIbXnMwHjWvcn9Azl/rA7hoIDTdEZ/xP6nglRc4EjMbxHStwwUjhgC2ak8wa+YtzC2kNDdAo2ZeNs3cJ[/tex]问 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]上是否可测 ?[tex=2.429x1.357]HahJs8lvA4tV0CFg1fYnxw==[/tex]是否可测?