举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
内容
- 0
对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 1
假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9
- 2
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶矩阵,且[tex=2.643x1.357]h0pLE8vvleI3SS/lZLfCsw==[/tex],则[tex=4.143x1.357]TzVoItsLVWI00YVI4rvLQQ==[/tex]( ). 未知类型:{'options': ['2', '-2', '8', '-8'], 'type': 102}
- 3
判断半径大小并说明原因:(1)[tex=1.071x1.0]ZIxpATrL2EWTpYe3CKPlpg==[/tex]与 [tex=1.357x1.0]LO7mudz7++HOXb8YDQ1UtQ==[/tex](2) [tex=1.286x1.0]nOvFdt4hpTubfX23eRvSvg==[/tex]与[tex=1.071x1.0]Kr2c9X1cZ4El5JSNMoM0/w==[/tex](3) [tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]与[tex=1.357x1.0]ovKrdUm5wnQSTfl9He3wzA==[/tex](4)[tex=1.143x1.0]8nY7k4VEnlDIEx7o05iMhQ==[/tex]与[tex=1.357x1.214]in11+JirBe0MeyXDnVwAww==[/tex](5)[tex=1.643x1.214]cIgqspnlK9Ra13rNdyZhHQ==[/tex]与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex](6)[tex=1.929x1.143]CtrLAecFBVyCnMYbqB02Ag==[/tex]与[tex=2.0x1.214]2cEIifUWf5oYRzhjCpTV6A==[/tex](7)[tex=2.214x1.214]OdTls2gllRl/Z1zy0+35/g==[/tex]与[tex=2.071x1.214]YDXlUgl4Yvd6QFjcd0Ns2Q==[/tex](8)[tex=2.071x1.214]QvCjZKA7OQkNYccCl0MVgQ==[/tex]与[tex=1.929x1.214]GDfkuEdqfBLP2oRgr+Wojw==[/tex]
- 4
求下列函数的单调区间、凹凸区间、极值点、拐点和渐近线,并绘图(图略).(1) [tex=6.643x1.5]bfylM61K4fB2dxr0OSsfGnNoGCHA31PVTv+V6O1K8rw=[/tex](2)[tex=7.643x1.571]v8BogKFXW30N+HMJ7QR6DhxEDs5D0riUpoj095rhlGc=[/tex](3) [tex=3.714x2.143]X1YpNX45Pb+t3RD9Lv2Xa/npVx6iPUE04M2Y4K2k/cw=[/tex](4) [tex=5.071x3.0]4TWEbfJ+QFPbBo6PXWTsCrjc66tVrHBOTlDUBxhSpARz8/MfCO/nUo/gE3SyIffw[/tex](5)[tex=6.571x2.429]gt+k1kCw/+VFBVaKddmG6PvDvxiTdyZFXDwIPBeuGlw=[/tex](6)[tex=5.643x1.429]Hzyd6Qvm69qjRqgBIuKTx/cTmFyy56Dt2K/GC7NoCdc=[/tex](7) [tex=7.143x1.214]CwtdUElTamN1NqF0aKHeWGdaXEazoOnz3w3c67izzuE=[/tex](8)[tex=4.714x2.786]cxjZEag+Wbr67lAUIC3Slk2OV17yHgezOhFRferr5F0=[/tex].