设 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 是一个有四个元素的域,证明(1) [tex=3.429x1.0]fpgDa4+7uingwhfv9kEsYIKlmg303tI2aHaW9E8n3G0=[/tex];(2) 作出 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 的加法和乘法运算表。
举一反三
- 设域[tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 没有不可离扩域. 证明, [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]的任一代数扩域都没有不可离扩域
- 设 [tex=19.214x1.286]6+T6mbzMdrDA2+ZcnE/mY/5nUgjR5zRp/RNI74F5SENd3lG2W2SFEg0dToOwMx+bmIIiAK4ncZdKPLh6Xy76xS/gSp8erjaixYxSePH7Q5c=[/tex], 则 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 关于数的加法和乘法作成一个域。
- 令 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 是一个含 [tex=1.0x1.214]7dtpq+Nds2yvk4oPHy1FgA==[/tex] 个元的有限域,证明,对于 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的每一个因数 [tex=3.0x1.071]+PTF78Nd5+C95LvA5QbE7Q==[/tex]存在并且只存在 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]的一个有 [tex=1.214x1.214]KJLx+EM1joQACiFbmjb7Lg==[/tex] 个元的子域 [tex=1.0x1.0]2c2ibAGoy7AWsWeVovUfbQ==[/tex]
- 找一个域 [tex=0.929x1.214]+1wJql5cfr8bn3vbFZ622w==[/tex]使 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 有一个有限扩域 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex], 而[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 不是[tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]的单扩域.
- 单扩域定理 : 对于任一给定域 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 以及 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 上一元又项式环[tex=1.786x1.357]K4FsY6VgImZd8wLXRcESkg==[/tex] 的给定不可约多项式[tex=12.357x1.5]fS/Bf/jCTfAXbQL40apxgKNHfzBuPHplzfSwQMHOKjSm7HQ2F1okb+QYZa3nVcpz[/tex]总存在 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]的单代数扩域 [tex=2.357x1.357]VoicuIRNXuOFNsgOu51kvg==[/tex] 其中 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 在 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 上的极小多项式是[tex=2.0x1.357]IpD5lLMNSoOfHDUzqLjOxA==[/tex]详细证明定理中 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 在域[tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]上的极小多项式是 [tex=2.143x1.357]yJmi2mrkwuEXwLM8VXTLrQ==[/tex]