如果环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中元素[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]同[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中每个元素可换,则称[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]为环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的一个中心元素 R 的所有中心元素作成的集合叫做环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的中心. 证明:除环的中心是一个域.[br][/br]
举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, 集合[tex=17.429x1.286]1J1SivOWW5Z2LFlO+jxfjuA8rlk01xIOptZycDH6fm7g7o5b+NKM1GTrN/gR+I5wjUgevTCj5VTmWN/Pgsy1UA==[/tex]叫做环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的中心.[br][/br]求证[tex=2.286x1.357]jF3SYJxDJgm6KahDCZyxrQ==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的子环, 但不一定是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想.
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]是环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中非零元, 求证:[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]不是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中右零因子当且仅当由等式[tex=2.714x1.0]cQ8bGb7XUhtdxYpruPVeaA==[/tex], 其中[tex=2.786x1.214]0fkbkrvGR5qxwOducNY52w==[/tex]可推出[tex=1.643x1.0]of01uYWjA++sfvelZIhdog==[/tex].
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]是环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中非零元, 求证:[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]不是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中左零因子当且仅当由等式[tex=2.714x1.0]dA7qWlSFmphTMWDBe82bqA==[/tex], 其中[tex=2.786x1.214]0fkbkrvGR5qxwOducNY52w==[/tex]可推出b=c.
- 环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中元[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]叫做幂等元, 如果[tex=2.143x1.214]zODDITGVg33rYRBP98VF/g==[/tex]. 如果[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]又属于环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的中心, 则称[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]为中心幂等元. 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是含幺环, [tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的中心幂等元. 求证: [tex=1.286x1.0]74n6tKMlTkqGjOgbHLaoMQ==[/tex]和[tex=3.286x1.357]Gtj+ow6IJXfT/5Cqvn1yJw==[/tex]均是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想, 并且[tex=8.071x1.571]MmjD0I0GjyEBGOdUmoAh3B6xr+6qlyOK1w97+6f7Z54=[/tex].
- 设半径为 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的球的球心在以原点为中心、[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 为半径的球面上[tex=5.786x1.357]Wr3eYzLjwBaBju8O43wx7Q==[/tex] 证明半径为 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的球夹在半径为 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 的球内的 表面积为最大时, [tex=3.429x2.357]K0k9l0gJlLpPgPbth4+i9cOjhEDYqiUuic/MSObpaa4=[/tex]