设 [tex=9.643x3.357]ACpG7W/lXiEwdW69ASBj8zLd8wytShowCGMrNp1HsFqGXlHdrht0f1EBoAJfEq1Xzpge/96h2Qyrasvw1PFqp3FKIOCqOOG8lSelPNs+KAe4YtCKjCaJrdK0fveownf2[/tex]在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,求 [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 的值.
举一反三
- 设[tex=12.071x4.5]ACpG7W/lXiEwdW69ASBj8zYaIr2wx+7JWz2IzBScsBjdQv9HwY8tx8a+zi9GPf4nD5Gz7Y25EawW29tGA8BQ3SIF1vDXlqERzodrq09VNj0Xqbv/xkJfDVL1Xiv6sGe1bm4Xlvq6qKjxQVJudcQBDg==[/tex]求 [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 使 [tex=1.857x1.357]QwcZRP/k6GQjt3RgosTUtg==[/tex] 在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处连续.
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 的某邻域内有定义, 且[tex=14.143x2.0]j9xQoAXOO/rhZ2v9jEBRiI8bw3CHft7hrxnaKNO/f+t5UbORG8jSsjO7SikHkPHo[/tex] 试判断:(1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可微? 若可微,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的微分;(2)函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可导?若可导,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的导数.
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 对任意[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 均满足等式 [tex=6.286x1.357]9Henm3Boh97bCiQ4P5+RAg==[/tex], 且 [tex=3.357x1.429]vZRefRVGjKmtVlJAPwcIXW9YUXhX1maobUdc5ktFF0g=[/tex], 其中 [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 为非零常数,则函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 未知类型:{'options': ['在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处不可导', '在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,且 [tex=3.429x1.429]OU887q0ErIncI157W+wgIwhKZZjX11IuczTVwAaGAWo=[/tex]', '在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,且 [tex=3.357x1.429]SGryHIpwYjPFzXIKKawxKubnTD/gL204ydOuJjc3dXo=[/tex]', '在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,且 [tex=3.857x1.429]OU887q0ErIncI157W+wgI7583lUhQ2fBxLJt88UZL9A=[/tex]'], 'type': 102}
- 已知 [tex=8.429x1.5]l4T7GvVQskjWWgk1JHftt2WfvpkCPXkTj+O/OK/5lvw=[/tex] 在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 与[tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex]处有极值,试求常数 [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex].
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 满足 [tex=6.286x1.357]9Henm3Boh97bCiQ4P5+RAg==[/tex],且 [tex=3.357x1.429]vZRefRVGjKmtVlJAPwcIXWN3t/JICuT/Msx0M9iYt5k=[/tex],其中 [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 均为常数,证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,且 [tex=3.857x1.429]OU887q0ErIncI157W+wgI7583lUhQ2fBxLJt88UZL9A=[/tex]