设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 求证: 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex], 使 [tex=5.357x1.143]Wbhpk6fsBNi2qM8u+WL7eg==[/tex]的充要条件是 [tex=3.286x1.0]ApBtKiFHAOgbksEzlkUgQcH0xASBEp8gGImmCF1jAes=[/tex]
举一反三
- 设 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 有相同的特征值, 且这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值互不相等. 求证: 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=1.714x1.214]+50NLKmQlExnsgtF9o5osQ==[/tex], 使 [tex=6.714x1.214]iWx5GMtLVkHKqZmcNE8Au/1+cNI14CBoocJqKqvHS60=[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩阵, 求证: 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶酉矩阵 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex], 使 [tex=3.214x1.214]W7KMZ9eTc4N4OEAP/sk56g==[/tex] 是上三角矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵的充要条件是存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异实矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.286x1.143]Ys46PWl0/Kt6EeuPQmIYUVrqckiP2yTAu4+gPWxyAI8=[/tex];
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是半正定阵的充要条件是存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.571x1.143]hxFWgRCv5aAQupvKU7mh2beLYIJKHZGJzzikFX5cknU=[/tex] 特别地, [tex=5.643x1.5]D4lHlRC2Cj631bW0hzH2K1oqj6tIuom8fDjIozTyv0w=[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=9.143x1.429]XRMmUOtjtKMyseaeIn9jPM1TnNKlMhqAAioUZ3jWn/FX+SyCCFosC01uB/CWa/Kl[/tex], 其中[tex=0.714x1.0]AiT6fhT2pvop+UvpD2oClg==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角矩阵。