设 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 有相同的特征值, 且这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值互不相等. 求证: 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=1.714x1.214]+50NLKmQlExnsgtF9o5osQ==[/tex], 使 [tex=6.714x1.214]iWx5GMtLVkHKqZmcNE8Au/1+cNI14CBoocJqKqvHS60=[/tex]
举一反三
- 设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 求证: 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex], 使 [tex=5.357x1.143]Wbhpk6fsBNi2qM8u+WL7eg==[/tex]的充要条件是 [tex=3.286x1.0]ApBtKiFHAOgbksEzlkUgQcH0xASBEp8gGImmCF1jAes=[/tex]
- 设 [tex=2.786x1.214]iQbgMqjoAzxOFWjVlhQ/IQ==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 各有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的特征值, 又 [tex=1.857x1.357]16KT0+hXCf8wMIstCDilkg==[/tex]是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式, 且 [tex=2.071x1.357]20lFRzgrG4cdjOfs4Ad43w==[/tex] 是可逆矩阵. 求证: 矩阵 [tex=6.929x2.786]gnJdtx18Gteda4cw1elCaw1rz7PGYBU/xDTd1JTsuspF7aiAA42OHoV6hWfd0gGeCfm3ufa2hbIwfH2qyHHz+O8XZbDcrmgiTrA5HwaAVIA=[/tex] 相似于对角矩阵.
- 设 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 证明:若 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都半正定, 则 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 的特征值全是非负实数.
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互不相同的特征值, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式 和极小多项式相等.
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的元素全是 1, 求[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个特征值.