设 [tex=2.571x1.214]KV1JYLtWo7PgXKV96f5fCg==[/tex] 是域 [tex=2.5x1.214]5JUuycUO1KhklBSu15Ggb62PtLkWCW7xn+q4OWaxqqE=[/tex] 上的向量空间, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 可以表为 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 个真子空间的并 . 求 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 的最小值.
举一反三
- 设 [tex=2.571x1.214]KV1JYLtWo7PgXKV96f5fCg==[/tex] 是域 [tex=2.5x1.214]kigtu05vD/ZkLtOPJs7q7u0YEIuaSx4BVWI/2dSy16g=[/tex] 上的向量空间. 证明: [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 可以表为 3 个真子空间的并.
- 当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,反常积分[tex=5.857x3.429]PJkWCDHq0HBl1uIZQZIQaCJeYEBINEa3r1jVRLOCV3RAYxRTzznIBmThvoc5BKDWEufXbmYTxx3twNmSd5TmhQ==[/tex]收敛? 当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,这反常积分发散?当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,这反常积分取得最小值?
- 当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,反常积分[tex=6.429x2.786]PJkWCDHq0HBl1uIZQZIQaAQKDrmXbAa2BP9X+F9KcEXbmbpBFRWCul9iGn0Yld/C[/tex]收敘?当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时, 该反常积分发散?当[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,该反常积分取得最小值?
- 证明一个 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 一循环置换的阶是 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex].
- 计算下列矩阵的 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 次幂, 其中 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为正整数:[tex=7.929x4.786]SG13E7iu2HdaLVWfWJMdasNcssnOsnpcSXP9pfv8ZVudX8uBxPyIW+BW1iuKqBWPQy19xF0hvC5K+ZJXm49WVAb1VZdwsjQNiE6Ohf5lij4=[/tex]