计算\(\int_L {\sqrt y } ds\),其中\(L\)是抛物线\(y=x^2\)上点\((0,0)\)与\((1,1)\)之间的一段弧。
A: \({1 \over {12}}(6\sqrt 5 - 1)\)
B: \({1 \over {12}}(5\sqrt 6 - 1)\)
C: \({1 \over {12}}(5\sqrt 5 - 1)\)
D: \({1 \over {12}}(5\sqrt 5 + 1)\)
A: \({1 \over {12}}(6\sqrt 5 - 1)\)
B: \({1 \over {12}}(5\sqrt 6 - 1)\)
C: \({1 \over {12}}(5\sqrt 5 - 1)\)
D: \({1 \over {12}}(5\sqrt 5 + 1)\)
举一反三
- 计算\(\oint_L x ds\),其中\(\)为由直线\(y=x\),及抛物线\(y=x^2\)所围成的区域整个边界。 A: \({1 \over {12}}(5\sqrt 2 + 6\sqrt 5 {\rm{ - }}1)\) B: \({1 \over {12}}(6\sqrt 5 + 5\sqrt 2 {\rm{ - }}1)\) C: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 {\rm{ - }}1)\) D: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 + 1)\)
- \(已知L是抛物线y=x^2上点O(0,0)与点A(1,1)之间的一段弧,则\int_{L}\sqrt{y}ds=(\,)\) A: \[\frac{1}{12}(5\sqrt{5}-1)\] B: \[\frac{1}{12}(3\sqrt{3}-1)\] C: \[\frac{1}{13}(5\sqrt{5}-1)\] D: \[\frac{1}{13}(3\sqrt{3}-1)\]
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- 函数\( y = x + \sqrt {1 - x} \)的极大值为( ) A: 0 B: 1 C: \( {5 \over 4} \) D: \( {4 \over 5} \)
- 函数\(y = \arcsin x\)的导数为( ). A: \( - {1 \over {\sqrt {1 + {x^2}} }}\) B: \({1 \over {\sqrt {1 + {x^2}} }}\) C: \({1 \over {\sqrt {1 - {x^2}} }}\) D: \( - {1 \over {\sqrt {1 - {x^2}} }}\)