在SVM算法中,离分类面最近的样本到分类面的距离叫做______ ;这样的样本叫做______ .
分类间隔:)支持向量
举一反三
内容
- 0
在SVM(支持向量机)分类模型中支持向量是指() A: 训练样本点到最优分类超平面的距离 B: 最优分类超平面的参数向量 C: 到最优分类超平面距离最近的训练样本点对应的特征向量 D: 拉格朗日因子α构成的向量
- 1
在Ada Boosting算法中,如果某个样本无法被当前弱分类器分类成功,则减少该样本权重,否则增大该样本权重。
- 2
在SVM训练好后,我们可以抛弃非支持向量的样本点,仍然可以对新样本进行分类。
- 3
SVM分类器模型中软间隔(soft margin)的主要用途是() A: 解决线性不可分问题 B: 允许少量错分类样本,解决不完全线性可分问题 C: 降低算法时间复杂度 D: 提高算法分类精确度
- 4
KNN算法的分类原理有()。 A: 把已经分类或需要分类的样本在定义的特征空间上表征 B: 需要分类的样本选择特征空间上和自己最邻近的K个样本 C: 需要分类的样本的类别就是这K个样本中最多的那个类别