讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=8.143x3.643]s4iFwJNC/D8533R68c8pxv5NsFqHX6R+erpiIqrTRdt9smxkXK11Vc+zzjml+KH2GMydpmjjKdYCAP32l5VoY6Ticp5i0hptmzziHd7p5W+mU/ANLLJQwXr75oPM+oM5[/tex]
举一反三
- 讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
- 讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=9.929x3.929]s4iFwJNC/D8533R68c8pxv5NsFqHX6R+erpiIqrTRdsNAnHd9GuS1UZ686qFkLPvMOzbwanh1w67UC9i1lZw9XMSByMamvRAtLR2LEvelQ1wh2mNVmUzU6z8lqZJOHBe[/tex]
- 讨论用 Jacobi 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
- 试由系数矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]直接判定 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]6ZAMAleX7Rulm1xJefgAbg==[/tex]必收敛,其中[br][/br][tex=8.929x3.643]/YGKh0J0WJuyVV8Zsv9KT3buOo8AqSw0KtqXsw+2Bh+/5L/qXhGbneEUyBf0Ade16vt7quwdGIIT0m7jbMYPQPoJDBmJtQUrt2YIuESFrkDOoZfz33GNXEgcLYMkdaWK[/tex]
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}