讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
举一反三
- 讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=9.929x3.929]s4iFwJNC/D8533R68c8pxv5NsFqHX6R+erpiIqrTRdsNAnHd9GuS1UZ686qFkLPvMOzbwanh1w67UC9i1lZw9XMSByMamvRAtLR2LEvelQ1wh2mNVmUzU6z8lqZJOHBe[/tex]
- 讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=8.143x3.643]s4iFwJNC/D8533R68c8pxv5NsFqHX6R+erpiIqrTRdt9smxkXK11Vc+zzjml+KH2GMydpmjjKdYCAP32l5VoY6Ticp5i0hptmzziHd7p5W+mU/ANLLJQwXr75oPM+oM5[/tex]
- 讨论用 Jacobi 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
- 试由系数矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]直接判定 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]6ZAMAleX7Rulm1xJefgAbg==[/tex]必收敛,其中[br][/br][tex=8.929x3.643]/YGKh0J0WJuyVV8Zsv9KT3buOo8AqSw0KtqXsw+2Bh+/5L/qXhGbneEUyBf0Ade16vt7quwdGIIT0m7jbMYPQPoJDBmJtQUrt2YIuESFrkDOoZfz33GNXEgcLYMkdaWK[/tex]
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$