讨论用 Jacobi 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
讨论用 Jacobi 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
求下列矩阵在实数域内的特征根和相应的特征向量:[tex=8.929x3.643]075gCzZzsMRb6HYXYk9X92fR2aZbOtLFTD3NHnAJ7iiyEqJd6/21caqM52aQWEW0jo4oIkjASTVGycF0sf4dqEegIHJCfZg0WwzOmKUaZLwQwqu3a2jbrTxRBcjar10x[/tex]
求下列矩阵在实数域内的特征根和相应的特征向量:[tex=8.929x3.643]075gCzZzsMRb6HYXYk9X92fR2aZbOtLFTD3NHnAJ7iiyEqJd6/21caqM52aQWEW0jo4oIkjASTVGycF0sf4dqEegIHJCfZg0WwzOmKUaZLwQwqu3a2jbrTxRBcjar10x[/tex]
讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
讨论用 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]7rFCa5ueTxvWgar0+gcGXw==[/tex]的收敛性,其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]:[tex=8.929x3.643]s4iFwJNC/D8533R68c8pxmoHI5wSfVYkzCfzaYvyL2HXEipjQN1KceA7+d4ymOXQcWw5trO4octzHdjgLLB2Gm80uvr1XleQcvwYwot5siQz+CF8ppOgUQVkhtTRA1sM[/tex]
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率密度为[tex=8.929x3.643]BTeyLq0XT+/djvCqLM2VYZXWtru8PXREg43OtwDtUYeokmIbznRTHsLmfqpGp98mYnlhOzz+W0sGjDMonpqZ9g==[/tex],求[tex=3.143x1.357]wq/g+lU/5hd4wBPTj2ogiQ==[/tex]的概率密度。
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率密度为[tex=8.929x3.643]BTeyLq0XT+/djvCqLM2VYZXWtru8PXREg43OtwDtUYeokmIbznRTHsLmfqpGp98mYnlhOzz+W0sGjDMonpqZ9g==[/tex],求[tex=3.143x1.357]wq/g+lU/5hd4wBPTj2ogiQ==[/tex]的概率密度。
试由系数矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]直接判定 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]6ZAMAleX7Rulm1xJefgAbg==[/tex]必收敛,其中[br][/br][tex=8.929x3.643]/YGKh0J0WJuyVV8Zsv9KT3buOo8AqSw0KtqXsw+2Bh+/5L/qXhGbneEUyBf0Ade16vt7quwdGIIT0m7jbMYPQPoJDBmJtQUrt2YIuESFrkDOoZfz33GNXEgcLYMkdaWK[/tex]
试由系数矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]直接判定 Gauss - Seidel 迭代法求解方程组[tex=2.571x1.0]6ZAMAleX7Rulm1xJefgAbg==[/tex]必收敛,其中[br][/br][tex=8.929x3.643]/YGKh0J0WJuyVV8Zsv9KT3buOo8AqSw0KtqXsw+2Bh+/5L/qXhGbneEUyBf0Ade16vt7quwdGIIT0m7jbMYPQPoJDBmJtQUrt2YIuESFrkDOoZfz33GNXEgcLYMkdaWK[/tex]
试用初等反射阵将[tex=8.929x3.643]/YGKh0J0WJuyVV8Zsv9KT3buOo8AqSw0KtqXsw+2Bh/oCFvSBUDH1S64o1h6V8xwPl4QaOZHH5sTjf1P3PuoXtsLrcR2oC3tnBfaYrq8tvgweIlrZIB9x4sGIpzqXMNn[/tex]分解成[tex=1.571x1.286]F5+a3EWvLOFkyPAFLHzMjw==[/tex]的形式,其中[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]为正交阵,[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]为上三角阵。
试用初等反射阵将[tex=8.929x3.643]/YGKh0J0WJuyVV8Zsv9KT3buOo8AqSw0KtqXsw+2Bh/oCFvSBUDH1S64o1h6V8xwPl4QaOZHH5sTjf1P3PuoXtsLrcR2oC3tnBfaYrq8tvgweIlrZIB9x4sGIpzqXMNn[/tex]分解成[tex=1.571x1.286]F5+a3EWvLOFkyPAFLHzMjw==[/tex]的形式,其中[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]为正交阵,[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]为上三角阵。
下列变量组()是一个闭回路。 A: {x,x,x,x,x,x} B: {x,x,x,x,x} C: {x,x,x,x,x,x} D: {x,x,x,x,x,x}
下列变量组()是一个闭回路。 A: {x,x,x,x,x,x} B: {x,x,x,x,x} C: {x,x,x,x,x,x} D: {x,x,x,x,x,x}
以下谓词蕴含式正确的是(): (∀x) (A(x)→B(x))=>( ∀x)A(x)→(∀x)B(x)|(∀x) (A(x)↔B(x))=>( ∀x)A(x)↔(∀x)B(x)|(∀x)A(x)∨(∀x)B(x)=>( ∀x) (A(x)∨B(x))|(∃x) (A(x)∧B(x))=>(∃x)A(x)∧(∃x)B(x)
以下谓词蕴含式正确的是(): (∀x) (A(x)→B(x))=>( ∀x)A(x)→(∀x)B(x)|(∀x) (A(x)↔B(x))=>( ∀x)A(x)↔(∀x)B(x)|(∀x)A(x)∨(∀x)B(x)=>( ∀x) (A(x)∨B(x))|(∃x) (A(x)∧B(x))=>(∃x)A(x)∧(∃x)B(x)
以下谓词蕴含式正确的是(): (?x) (A(x)→B(x))=>( ?x)A(x)→(?x)B(x)|(?x) (A(x)?B(x))=>( ?x)A(x)?(?x)B(x)|(?x)A(x)∨(?x)B(x)=>( ?x) (A(x)∨B(x))|(?x) (A(x)∧B(x))=>(?x)A(x)∧(?x)B(x)
以下谓词蕴含式正确的是(): (?x) (A(x)→B(x))=>( ?x)A(x)→(?x)B(x)|(?x) (A(x)?B(x))=>( ?x)A(x)?(?x)B(x)|(?x)A(x)∨(?x)B(x)=>( ?x) (A(x)∨B(x))|(?x) (A(x)∧B(x))=>(?x)A(x)∧(?x)B(x)
下列式中错误的是: A: (∀x)(A(x)Úp(x)) Û (∀x)A(x)Ú (∀x)p(x) B: ($x)A(x) Ù p Û ($x)(A(x) Ù p ) C: (∀x)(A(x)ÚB(x)) Þ (∀x)A(x)Ú( ∀x)B(x) D: ($x)(A(x)ÙB(x)) Þ ($x)A(x)Ù( $x)B(x)
下列式中错误的是: A: (∀x)(A(x)Úp(x)) Û (∀x)A(x)Ú (∀x)p(x) B: ($x)A(x) Ù p Û ($x)(A(x) Ù p ) C: (∀x)(A(x)ÚB(x)) Þ (∀x)A(x)Ú( ∀x)B(x) D: ($x)(A(x)ÙB(x)) Þ ($x)A(x)Ù( $x)B(x)