用换元法解方程3xx2-1+x2-1x=52,若设xx2-1=y.则原方程可化为( )
举一反三
- 设x=1, y=2, 下面程序段执行后x,y的取值是( )。t=xx=yy=t A: x=2 y=1 B: x=1 y=2 C: x=1 y=1 D: x=2 y=2
- 已知函数由下列方程确定$x^2 - y^2=1 $,则$\frac{d^2 y}{d^2 x} =$( )。 A: $\frac{1}{y^2}$ B: $-\frac{1}{y^2}$ C: $-\frac{1}{y^3}$ D: $\frac{1}{y^3}$
- 若方程x^2/(4-k)+y^2/(k-1)=1是椭圆方程,则k的取值范围为1 ×
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则 A: λ=1/2,μ=1/2 B: λ=-1/2,μ=-1/2 C: λ=2/3,μ=1/3 D: λ=2/3,μ=2/3