• 2022-06-06
    设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
    A: λ=1/2,μ=1/2
    B: λ=-1/2,μ=-1/2
    C: λ=2/3,μ=1/3
    D: λ=2/3,μ=2/3
  • A

    内容

    • 0

      已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$

    • 1

      方程\(\left( {1 - {x^2}} \right)y - xy' = 0\)的通解是( )。 A: \(y = C\sqrt {1 - {x^2}} \) B: \(y = - {1 \over 2}{x^3} + Cx\) C: \(y = {C \over {\sqrt {1 - {x^2}} }}\) D: \(y = Cx{e^{ - {1 \over 2}{x^2}}}\)

    • 2

      设群G = <P({2, 3 }),Å>. 解下列群方程:(1) { 2 }ÅX = Æ (2) YÅ{2, 3} = {2}

    • 3

      已知$y=y(x)$是由方程${{y}^{3}}-{{x}^{3}}+2xy=0$所确定的隐函数,设曲线$y=y(x)$有斜渐进线$y=ax+b$,则( )。 A: $a=-1,b=-\frac{2}{3}$ B: $a=1,b=\frac{2}{3}$ C: $a=-1,b=\frac{2}{3}$ D: $a=1,b=-\frac{2}{3}$

    • 4

      下面程序段中正确的是( )。 A: If x<0 Then y=0 If x<1 Then y=1 If x<2 Then y=2 If x>=2 Then y=3 B: If x>=2 Then y=3 If x>1 Then y=2 If x>=0Then y=1 If x>0 Then y=0 C: If x<0 Then y=0 Else If>=0Then y=1 Else y=3 End If D: If x>=2 Then y=3 Else If>=1 Then y=2 Else y=0 End If